|
140 | 140 | sanitize_array,
|
141 | 141 | sanitize_masked_array,
|
142 | 142 | )
|
143 |
| -from pandas.core.generic import NDFrame |
| 143 | +from pandas.core.generic import ( |
| 144 | + NDFrame, |
| 145 | + make_doc, |
| 146 | +) |
144 | 147 | from pandas.core.indexers import check_key_length
|
145 | 148 | from pandas.core.indexes.api import (
|
146 | 149 | DatetimeIndex,
|
@@ -9592,43 +9595,6 @@ def aggregate(self, func=None, axis: Axis = 0, *args, **kwargs):
|
9592 | 9595 |
|
9593 | 9596 | agg = aggregate
|
9594 | 9597 |
|
9595 |
| - # error: Signature of "any" incompatible with supertype "NDFrame" [override] |
9596 |
| - @overload # type: ignore[override] |
9597 |
| - def any( |
9598 |
| - self, |
9599 |
| - *, |
9600 |
| - axis: Axis = ..., |
9601 |
| - bool_only: bool | None = ..., |
9602 |
| - skipna: bool = ..., |
9603 |
| - level: None = ..., |
9604 |
| - **kwargs, |
9605 |
| - ) -> Series: |
9606 |
| - ... |
9607 |
| - |
9608 |
| - @overload |
9609 |
| - def any( |
9610 |
| - self, |
9611 |
| - *, |
9612 |
| - axis: Axis = ..., |
9613 |
| - bool_only: bool | None = ..., |
9614 |
| - skipna: bool = ..., |
9615 |
| - level: Level, |
9616 |
| - **kwargs, |
9617 |
| - ) -> DataFrame | Series: |
9618 |
| - ... |
9619 |
| - |
9620 |
| - # error: Missing return statement |
9621 |
| - @doc(NDFrame.any, **_shared_doc_kwargs) |
9622 |
| - def any( # type: ignore[empty-body] |
9623 |
| - self, |
9624 |
| - axis: Axis = 0, |
9625 |
| - bool_only: bool | None = None, |
9626 |
| - skipna: bool = True, |
9627 |
| - level: Level = None, |
9628 |
| - **kwargs, |
9629 |
| - ) -> DataFrame | Series: |
9630 |
| - ... |
9631 |
| - |
9632 | 9598 | @doc(
|
9633 | 9599 | _shared_docs["transform"],
|
9634 | 9600 | klass=_shared_doc_kwargs["klass"],
|
@@ -10920,6 +10886,170 @@ def _reduce_axis1(self, name: str, func, skipna: bool) -> Series:
|
10920 | 10886 | res_ser = self._constructor_sliced(result, index=self.index, copy=False)
|
10921 | 10887 | return res_ser
|
10922 | 10888 |
|
| 10889 | + @doc(make_doc("any", ndim=2)) |
| 10890 | + # error: Signature of "any" incompatible with supertype "NDFrame" |
| 10891 | + def any( # type: ignore[override] |
| 10892 | + self, |
| 10893 | + *, |
| 10894 | + axis: Axis = 0, |
| 10895 | + bool_only=None, |
| 10896 | + skipna: bool = True, |
| 10897 | + **kwargs, |
| 10898 | + ) -> Series: |
| 10899 | + # error: Incompatible return value type (got "Union[Series, bool]", |
| 10900 | + # expected "Series") |
| 10901 | + return self._logical_func( # type: ignore[return-value] |
| 10902 | + "any", nanops.nanany, axis, bool_only, skipna, **kwargs |
| 10903 | + ) |
| 10904 | + |
| 10905 | + @doc(make_doc("all", ndim=2)) |
| 10906 | + def all( |
| 10907 | + self, |
| 10908 | + axis: Axis = 0, |
| 10909 | + bool_only=None, |
| 10910 | + skipna: bool = True, |
| 10911 | + **kwargs, |
| 10912 | + ) -> Series: |
| 10913 | + # error: Incompatible return value type (got "Union[Series, bool]", |
| 10914 | + # expected "Series") |
| 10915 | + return self._logical_func( # type: ignore[return-value] |
| 10916 | + "all", nanops.nanall, axis, bool_only, skipna, **kwargs |
| 10917 | + ) |
| 10918 | + |
| 10919 | + @doc(make_doc("min", ndim=2)) |
| 10920 | + def min( |
| 10921 | + self, |
| 10922 | + axis: Axis | None = 0, |
| 10923 | + skipna: bool = True, |
| 10924 | + numeric_only: bool = False, |
| 10925 | + **kwargs, |
| 10926 | + ): |
| 10927 | + return super().min(axis, skipna, numeric_only, **kwargs) |
| 10928 | + |
| 10929 | + @doc(make_doc("max", ndim=2)) |
| 10930 | + def max( |
| 10931 | + self, |
| 10932 | + axis: Axis | None = 0, |
| 10933 | + skipna: bool = True, |
| 10934 | + numeric_only: bool = False, |
| 10935 | + **kwargs, |
| 10936 | + ): |
| 10937 | + return super().max(axis, skipna, numeric_only, **kwargs) |
| 10938 | + |
| 10939 | + @doc(make_doc("sum", ndim=2)) |
| 10940 | + def sum( |
| 10941 | + self, |
| 10942 | + axis: Axis | None = None, |
| 10943 | + skipna: bool = True, |
| 10944 | + numeric_only: bool = False, |
| 10945 | + min_count: int = 0, |
| 10946 | + **kwargs, |
| 10947 | + ): |
| 10948 | + return super().sum(axis, skipna, numeric_only, min_count, **kwargs) |
| 10949 | + |
| 10950 | + @doc(make_doc("prod", ndim=2)) |
| 10951 | + def prod( |
| 10952 | + self, |
| 10953 | + axis: Axis | None = None, |
| 10954 | + skipna: bool = True, |
| 10955 | + numeric_only: bool = False, |
| 10956 | + min_count: int = 0, |
| 10957 | + **kwargs, |
| 10958 | + ): |
| 10959 | + return super().prod(axis, skipna, numeric_only, min_count, **kwargs) |
| 10960 | + |
| 10961 | + @doc(make_doc("mean", ndim=2)) |
| 10962 | + def mean( |
| 10963 | + self, |
| 10964 | + axis: Axis | None = 0, |
| 10965 | + skipna: bool = True, |
| 10966 | + numeric_only: bool = False, |
| 10967 | + **kwargs, |
| 10968 | + ): |
| 10969 | + return super().mean(axis, skipna, numeric_only, **kwargs) |
| 10970 | + |
| 10971 | + @doc(make_doc("median", ndim=2)) |
| 10972 | + def median( |
| 10973 | + self, |
| 10974 | + axis: Axis | None = 0, |
| 10975 | + skipna: bool = True, |
| 10976 | + numeric_only: bool = False, |
| 10977 | + **kwargs, |
| 10978 | + ): |
| 10979 | + return super().median(axis, skipna, numeric_only, **kwargs) |
| 10980 | + |
| 10981 | + @doc(make_doc("sem", ndim=2)) |
| 10982 | + def sem( |
| 10983 | + self, |
| 10984 | + axis: Axis | None = None, |
| 10985 | + skipna: bool = True, |
| 10986 | + ddof: int = 1, |
| 10987 | + numeric_only: bool = False, |
| 10988 | + **kwargs, |
| 10989 | + ): |
| 10990 | + return super().sem(axis, skipna, ddof, numeric_only, **kwargs) |
| 10991 | + |
| 10992 | + @doc(make_doc("var", ndim=2)) |
| 10993 | + def var( |
| 10994 | + self, |
| 10995 | + axis: Axis | None = None, |
| 10996 | + skipna: bool = True, |
| 10997 | + ddof: int = 1, |
| 10998 | + numeric_only: bool = False, |
| 10999 | + **kwargs, |
| 11000 | + ): |
| 11001 | + return super().var(axis, skipna, ddof, numeric_only, **kwargs) |
| 11002 | + |
| 11003 | + @doc(make_doc("std", ndim=2)) |
| 11004 | + def std( |
| 11005 | + self, |
| 11006 | + axis: Axis | None = None, |
| 11007 | + skipna: bool = True, |
| 11008 | + ddof: int = 1, |
| 11009 | + numeric_only: bool = False, |
| 11010 | + **kwargs, |
| 11011 | + ): |
| 11012 | + return super().std(axis, skipna, ddof, numeric_only, **kwargs) |
| 11013 | + |
| 11014 | + @doc(make_doc("skew", ndim=2)) |
| 11015 | + def skew( |
| 11016 | + self, |
| 11017 | + axis: Axis | None = 0, |
| 11018 | + skipna: bool = True, |
| 11019 | + numeric_only: bool = False, |
| 11020 | + **kwargs, |
| 11021 | + ): |
| 11022 | + return super().skew(axis, skipna, numeric_only, **kwargs) |
| 11023 | + |
| 11024 | + @doc(make_doc("kurt", ndim=2)) |
| 11025 | + def kurt( |
| 11026 | + self, |
| 11027 | + axis: Axis | None = 0, |
| 11028 | + skipna: bool = True, |
| 11029 | + numeric_only: bool = False, |
| 11030 | + **kwargs, |
| 11031 | + ): |
| 11032 | + return super().kurt(axis, skipna, numeric_only, **kwargs) |
| 11033 | + |
| 11034 | + kurtosis = kurt |
| 11035 | + product = prod |
| 11036 | + |
| 11037 | + @doc(make_doc("cummin", ndim=2)) |
| 11038 | + def cummin(self, axis: Axis | None = None, skipna: bool = True, *args, **kwargs): |
| 11039 | + return NDFrame.cummin(self, axis, skipna, *args, **kwargs) |
| 11040 | + |
| 11041 | + @doc(make_doc("cummax", ndim=2)) |
| 11042 | + def cummax(self, axis: Axis | None = None, skipna: bool = True, *args, **kwargs): |
| 11043 | + return NDFrame.cummax(self, axis, skipna, *args, **kwargs) |
| 11044 | + |
| 11045 | + @doc(make_doc("cumsum", ndim=2)) |
| 11046 | + def cumsum(self, axis: Axis | None = None, skipna: bool = True, *args, **kwargs): |
| 11047 | + return NDFrame.cumsum(self, axis, skipna, *args, **kwargs) |
| 11048 | + |
| 11049 | + @doc(make_doc("cumprod", 2)) |
| 11050 | + def cumprod(self, axis: Axis | None = None, skipna: bool = True, *args, **kwargs): |
| 11051 | + return NDFrame.cumprod(self, axis, skipna, *args, **kwargs) |
| 11052 | + |
10923 | 11053 | def nunique(self, axis: Axis = 0, dropna: bool = True) -> Series:
|
10924 | 11054 | """
|
10925 | 11055 | Count number of distinct elements in specified axis.
|
@@ -11724,9 +11854,6 @@ def values(self) -> np.ndarray:
|
11724 | 11854 | return self._mgr.as_array()
|
11725 | 11855 |
|
11726 | 11856 |
|
11727 |
| -DataFrame._add_numeric_operations() |
11728 |
| - |
11729 |
| - |
11730 | 11857 | def _from_nested_dict(data) -> collections.defaultdict:
|
11731 | 11858 | new_data: collections.defaultdict = collections.defaultdict(dict)
|
11732 | 11859 | for index, s in data.items():
|
|
0 commit comments