{{ header }}
.. versionadded:: 1.0.0
There are two ways to store text data in pandas:
object
-dtype NumPy array.- :class:`StringDtype` extension type.
We recommend using :class:`StringDtype` to store text data.
Prior to pandas 1.0, object
dtype was the only option. This was unfortunate
for many reasons:
- You can accidentally store a mixture of strings and non-strings in an
object
dtype array. It's better to have a dedicated dtype. object
dtype breaks dtype-specific operations like :meth:`DataFrame.select_dtypes`. There isn't a clear way to select just text while excluding non-text but still object-dtype columns.- When reading code, the contents of an
object
dtype array is less clear than'string'
.
Currently, the performance of object
dtype arrays of strings and
:class:`arrays.StringArray` are about the same. We expect future enhancements
to significantly increase the performance and lower the memory overhead of
:class:`~arrays.StringArray`.
Warning
StringArray
is currently considered experimental. The implementation
and parts of the API may change without warning.
For backwards-compatibility, object
dtype remains the default type we
infer a list of strings to
.. ipython:: python pd.Series(['a', 'b', 'c'])
To explicitly request string
dtype, specify the dtype
.. ipython:: python pd.Series(['a', 'b', 'c'], dtype="string") pd.Series(['a', 'b', 'c'], dtype=pd.StringDtype())
Or astype
after the Series
or DataFrame
is created
.. ipython:: python s = pd.Series(['a', 'b', 'c']) s s.astype("string")
.. versionchanged:: 1.1.0
You can also use string
dtype on non-string data and it will be converted to
string
dtype:
.. ipython:: python s = pd.Series(['a', 2, np.nan], dtype="string") s type(s[1])
or convert from existing pandas data:
s1 = pd.Series([1,2, np.nan], dtype="Int64") s1 s2 = s1.astype("string") s2 type(s2[0])
These are places where the behavior of StringDtype
objects differ from
object
dtype
For
StringDtype
, :ref:`string accessor methods<api.series.str>` that return numeric output will always return a nullable integer dtype, rather than either int or float dtype, depending on the presence of NA values. Methods returning boolean output will return a nullable boolean dtype... ipython:: python s = pd.Series(["a", None, "b"], dtype="string") s s.str.count("a") s.dropna().str.count("a")
Both outputs are
Int64
dtype. Compare that with object-dtype.. ipython:: python s2 = pd.Series(["a", None, "b"], dtype="object") s2.str.count("a") s2.dropna().str.count("a")
When NA values are present, the output dtype is float64. Similarly for methods returning boolean values.
.. ipython:: python s.str.isdigit() s.str.match("a")
- Some string methods, like :meth:`Series.str.decode` are not available
on
StringArray
becauseStringArray
only holds strings, not bytes. - In comparison operations, :class:`arrays.StringArray` and
Series
backed by aStringArray
will return an object with :class:`BooleanDtype`, rather than abool
dtype object. Missing values in aStringArray
will propagate in comparison operations, rather than always comparing unequal like :attr:`numpy.nan`.
Everything else that follows in the rest of this document applies equally to
string
and object
dtype.
Series and Index are equipped with a set of string processing methods
that make it easy to operate on each element of the array. Perhaps most
importantly, these methods exclude missing/NA values automatically. These are
accessed via the str
attribute and generally have names matching
the equivalent (scalar) built-in string methods:
.. ipython:: python s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'], dtype="string") s.str.lower() s.str.upper() s.str.len()
.. ipython:: python idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank']) idx.str.strip() idx.str.lstrip() idx.str.rstrip()
The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance, you may have columns with leading or trailing whitespace:
.. ipython:: python df = pd.DataFrame(np.random.randn(3, 2), columns=[' Column A ', ' Column B '], index=range(3)) df
Since df.columns
is an Index object, we can use the .str
accessor
.. ipython:: python df.columns.str.strip() df.columns.str.lower()
These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing whitespaces, lower casing all names, and replacing any remaining whitespaces with underscores:
.. ipython:: python df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_') df
Note
If you have a Series
where lots of elements are repeated
(i.e. the number of unique elements in the Series
is a lot smaller than the length of the
Series
), it can be faster to convert the original Series
to one of type
category
and then use .str.<method>
or .dt.<property>
on that.
The performance difference comes from the fact that, for Series
of type category
, the
string operations are done on the .categories
and not on each element of the
Series
.
Please note that a Series
of type category
with string .categories
has
some limitations in comparison to Series
of type string (e.g. you can't add strings to
each other: s + " " + s
won't work if s
is a Series
of type category
). Also,
.str
methods which operate on elements of type list
are not available on such a
Series
.
Warning
Before v.0.25.0, the .str
-accessor did only the most rudimentary type checks. Starting with
v.0.25.0, the type of the Series is inferred and the allowed types (i.e. strings) are enforced more rigorously.
Generally speaking, the .str
accessor is intended to work only on strings. With very few
exceptions, other uses are not supported, and may be disabled at a later point.
Methods like split
return a Series of lists:
.. ipython:: python s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'], dtype="string") s2.str.split('_')
Elements in the split lists can be accessed using get
or []
notation:
.. ipython:: python s2.str.split('_').str.get(1) s2.str.split('_').str[1]
It is easy to expand this to return a DataFrame using expand
.
.. ipython:: python s2.str.split('_', expand=True)
When original Series
has :class:`StringDtype`, the output columns will all
be :class:`StringDtype` as well.
It is also possible to limit the number of splits:
.. ipython:: python s2.str.split('_', expand=True, n=1)
rsplit
is similar to split
except it works in the reverse direction,
i.e., from the end of the string to the beginning of the string:
.. ipython:: python s2.str.rsplit('_', expand=True, n=1)
replace
by default replaces regular expressions:
.. ipython:: python s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', '', np.nan, 'CABA', 'dog', 'cat'], dtype="string") s3 s3.str.replace('^.a|dog', 'XX-XX ', case=False)
Some caution must be taken to keep regular expressions in mind! For example, the following code will cause trouble because of the regular expression meaning of $:
.. ipython:: python # Consider the following badly formatted financial data dollars = pd.Series(['12', '-$10', '$10,000'], dtype="string") # This does what you'd naively expect: dollars.str.replace('$', '') # But this doesn't: dollars.str.replace('-$', '-') # We need to escape the special character (for >1 len patterns) dollars.str.replace(r'-\$', '-')
.. versionadded:: 0.23.0
If you do want literal replacement of a string (equivalent to
:meth:`str.replace`), you can set the optional regex
parameter to
False
, rather than escaping each character. In this case both pat
and repl
must be strings:
.. ipython:: python # These lines are equivalent dollars.str.replace(r'-\$', '-') dollars.str.replace('-$', '-', regex=False)
The replace
method can also take a callable as replacement. It is called
on every pat
using :func:`re.sub`. The callable should expect one
positional argument (a regex object) and return a string.
.. ipython:: python # Reverse every lowercase alphabetic word pat = r'[a-z]+' def repl(m): return m.group(0)[::-1] pd.Series(['foo 123', 'bar baz', np.nan], dtype="string").str.replace(pat, repl) # Using regex groups pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)" def repl(m): return m.group('two').swapcase() pd.Series(['Foo Bar Baz', np.nan], dtype="string").str.replace(pat, repl)
The replace
method also accepts a compiled regular expression object
from :func:`re.compile` as a pattern. All flags should be included in the
compiled regular expression object.
.. ipython:: python import re regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE) s3.str.replace(regex_pat, 'XX-XX ')
Including a flags
argument when calling replace
with a compiled
regular expression object will raise a ValueError
.
.. ipython:: @verbatim In [1]: s3.str.replace(regex_pat, 'XX-XX ', flags=re.IGNORECASE) --------------------------------------------------------------------------- ValueError: case and flags cannot be set when pat is a compiled regex
There are several ways to concatenate a Series
or Index
, either with itself or others, all based on :meth:`~Series.str.cat`,
resp. Index.str.cat
.
The content of a Series
(or Index
) can be concatenated:
.. ipython:: python s = pd.Series(['a', 'b', 'c', 'd'], dtype="string") s.str.cat(sep=',')
If not specified, the keyword sep
for the separator defaults to the empty string, sep=''
:
.. ipython:: python s.str.cat()
By default, missing values are ignored. Using na_rep
, they can be given a representation:
.. ipython:: python t = pd.Series(['a', 'b', np.nan, 'd'], dtype="string") t.str.cat(sep=',') t.str.cat(sep=',', na_rep='-')
The first argument to :meth:`~Series.str.cat` can be a list-like object, provided that it matches the length of the calling Series
(or Index
).
.. ipython:: python s.str.cat(['A', 'B', 'C', 'D'])
Missing values on either side will result in missing values in the result as well, unless na_rep
is specified:
.. ipython:: python s.str.cat(t) s.str.cat(t, na_rep='-')
.. versionadded:: 0.23.0
The parameter others
can also be two-dimensional. In this case, the number or rows must match the lengths of the calling Series
(or Index
).
.. ipython:: python d = pd.concat([t, s], axis=1) s d s.str.cat(d, na_rep='-')
.. versionadded:: 0.23.0
For concatenation with a Series
or DataFrame
, it is possible to align the indexes before concatenation by setting
the join
-keyword.
.. ipython:: python :okwarning: u = pd.Series(['b', 'd', 'a', 'c'], index=[1, 3, 0, 2], dtype="string") s u s.str.cat(u) s.str.cat(u, join='left')
Warning
If the join
keyword is not passed, the method :meth:`~Series.str.cat` will currently fall back to the behavior before version 0.23.0 (i.e. no alignment),
but a FutureWarning
will be raised if any of the involved indexes differ, since this default will change to join='left'
in a future version.
The usual options are available for join
(one of 'left', 'outer', 'inner', 'right'
).
In particular, alignment also means that the different lengths do not need to coincide anymore.
.. ipython:: python v = pd.Series(['z', 'a', 'b', 'd', 'e'], index=[-1, 0, 1, 3, 4], dtype="string") s v s.str.cat(v, join='left', na_rep='-') s.str.cat(v, join='outer', na_rep='-')
The same alignment can be used when others
is a DataFrame
:
.. ipython:: python f = d.loc[[3, 2, 1, 0], :] s f s.str.cat(f, join='left', na_rep='-')
Several array-like items (specifically: Series
, Index
, and 1-dimensional variants of np.ndarray
)
can be combined in a list-like container (including iterators, dict
-views, etc.).
.. ipython:: python s u s.str.cat([u, u.to_numpy()], join='left')
All elements without an index (e.g. np.ndarray
) within the passed list-like must match in length to the calling Series
(or Index
),
but Series
and Index
may have arbitrary length (as long as alignment is not disabled with join=None
):
.. ipython:: python v s.str.cat([v, u, u.to_numpy()], join='outer', na_rep='-')
If using join='right'
on a list-like of others
that contains different indexes,
the union of these indexes will be used as the basis for the final concatenation:
.. ipython:: python u.loc[[3]] v.loc[[-1, 0]] s.str.cat([u.loc[[3]], v.loc[[-1, 0]]], join='right', na_rep='-')
You can use []
notation to directly index by position locations. If you index past the end
of the string, the result will be a NaN
.
.. ipython:: python s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'], dtype="string") s.str[0] s.str[1]
Warning
Before version 0.23, argument expand
of the extract
method defaulted to
False
. When expand=False
, expand
returns a Series
, Index
, or
DataFrame
, depending on the subject and regular expression
pattern. When expand=True
, it always returns a DataFrame
,
which is more consistent and less confusing from the perspective of a user.
expand=True
has been the default since version 0.23.0.
The extract
method accepts a regular expression with at least one
capture group.
Extracting a regular expression with more than one group returns a DataFrame with one column per group.
.. ipython:: python pd.Series(['a1', 'b2', 'c3'], dtype="string").str.extract(r'([ab])(\d)', expand=False)
Elements that do not match return a row filled with NaN
. Thus, a
Series of messy strings can be "converted" into a like-indexed Series
or DataFrame of cleaned-up or more useful strings, without
necessitating get()
to access tuples or re.match
objects. The
dtype of the result is always object, even if no match is found and
the result only contains NaN
.
Named groups like
.. ipython:: python pd.Series(['a1', 'b2', 'c3'], dtype="string").str.extract(r'(?P<letter>[ab])(?P<digit>\d)', expand=False)
and optional groups like
.. ipython:: python pd.Series(['a1', 'b2', '3'], dtype="string").str.extract(r'([ab])?(\d)', expand=False)
can also be used. Note that any capture group names in the regular expression will be used for column names; otherwise capture group numbers will be used.
Extracting a regular expression with one group returns a DataFrame
with one column if expand=True
.
.. ipython:: python pd.Series(['a1', 'b2', 'c3'], dtype="string").str.extract(r'[ab](\d)', expand=True)
It returns a Series if expand=False
.
.. ipython:: python pd.Series(['a1', 'b2', 'c3'], dtype="string").str.extract(r'[ab](\d)', expand=False)
Calling on an Index
with a regex with exactly one capture group
returns a DataFrame
with one column if expand=True
.
.. ipython:: python s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"], dtype="string") s s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
It returns an Index
if expand=False
.
.. ipython:: python s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Calling on an Index
with a regex with more than one capture group
returns a DataFrame
if expand=True
.
.. ipython:: python s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
It raises ValueError
if expand=False
.
>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index
The table below summarizes the behavior of extract(expand=False)
(input subject in first column, number of groups in regex in
first row)
1 group | >1 group | |
Index | Index | ValueError |
Series | Series | DataFrame |
Unlike extract
(which returns only the first match),
.. ipython:: python s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"], dtype="string") s two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])' s.str.extract(two_groups, expand=True)
the extractall
method returns every match. The result of
extractall
is always a DataFrame
with a MultiIndex
on its
rows. The last level of the MultiIndex
is named match
and
indicates the order in the subject.
.. ipython:: python s.str.extractall(two_groups)
When each subject string in the Series has exactly one match,
.. ipython:: python s = pd.Series(['a3', 'b3', 'c2'], dtype="string") s
then extractall(pat).xs(0, level='match')
gives the same result as
extract(pat)
.
.. ipython:: python extract_result = s.str.extract(two_groups, expand=True) extract_result extractall_result = s.str.extractall(two_groups) extractall_result extractall_result.xs(0, level="match")
Index
also supports .str.extractall
. It returns a DataFrame
which has the
same result as a Series.str.extractall
with a default index (starts from 0).
.. ipython:: python pd.Index(["a1a2", "b1", "c1"]).str.extractall(two_groups) pd.Series(["a1a2", "b1", "c1"], dtype="string").str.extractall(two_groups)
You can check whether elements contain a pattern:
.. ipython:: python pattern = r'[0-9][a-z]' pd.Series(['1', '2', '3a', '3b', '03c', '4dx'], dtype="string").str.contains(pattern)
Or whether elements match a pattern:
.. ipython:: python pd.Series(['1', '2', '3a', '3b', '03c', '4dx'], dtype="string").str.match(pattern)
.. versionadded:: 1.1.0
.. ipython:: python pd.Series(['1', '2', '3a', '3b', '03c', '4dx'], dtype="string").str.fullmatch(pattern)
Note
The distinction between match
, fullmatch
, and contains
is strictness:
fullmatch
tests whether the entire string matches the regular expression;
match
tests whether there is a match of the regular expression that begins
at the first character of the string; and contains
tests whether there is
a match of the regular expression at any position within the string.
The corresponding functions in the re
package for these three match modes are
re.fullmatch,
re.match, and
re.search,
respectively.
Methods like match
, fullmatch
, contains
, startswith
, and
endswith
take an extra na
argument so missing values can be considered
True or False:
.. ipython:: python s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'], dtype="string") s4.str.contains('A', na=False)
You can extract dummy variables from string columns.
For example if they are separated by a '|'
:
.. ipython:: python s = pd.Series(['a', 'a|b', np.nan, 'a|c'], dtype="string") s.str.get_dummies(sep='|')
String Index
also supports get_dummies
which returns a MultiIndex
.
.. ipython:: python idx = pd.Index(['a', 'a|b', np.nan, 'a|c']) idx.str.get_dummies(sep='|')
See also :func:`~pandas.get_dummies`.
Method | Description |
---|---|
:meth:`~Series.str.cat` | Concatenate strings |
:meth:`~Series.str.split` | Split strings on delimiter |
:meth:`~Series.str.rsplit` | Split strings on delimiter working from the end of the string |
:meth:`~Series.str.get` | Index into each element (retrieve i-th element) |
:meth:`~Series.str.join` | Join strings in each element of the Series with passed separator |
:meth:`~Series.str.get_dummies` | Split strings on the delimiter returning DataFrame of dummy variables |
:meth:`~Series.str.contains` | Return boolean array if each string contains pattern/regex |
:meth:`~Series.str.replace` | Replace occurrences of pattern/regex/string with some other string or the return value of a callable given the occurrence |
:meth:`~Series.str.repeat` | Duplicate values (s.str.repeat(3) equivalent to x * 3 ) |
:meth:`~Series.str.pad` | Add whitespace to left, right, or both sides of strings |
:meth:`~Series.str.center` | Equivalent to str.center |
:meth:`~Series.str.ljust` | Equivalent to str.ljust |
:meth:`~Series.str.rjust` | Equivalent to str.rjust |
:meth:`~Series.str.zfill` | Equivalent to str.zfill |
:meth:`~Series.str.wrap` | Split long strings into lines with length less than a given width |
:meth:`~Series.str.slice` | Slice each string in the Series |
:meth:`~Series.str.slice_replace` | Replace slice in each string with passed value |
:meth:`~Series.str.count` | Count occurrences of pattern |
:meth:`~Series.str.startswith` | Equivalent to str.startswith(pat) for each element |
:meth:`~Series.str.endswith` | Equivalent to str.endswith(pat) for each element |
:meth:`~Series.str.findall` | Compute list of all occurrences of pattern/regex for each string |
:meth:`~Series.str.match` | Call re.match on each element, returning matched groups as list |
:meth:`~Series.str.extract` | Call re.search on each element, returning DataFrame with one row for each element and one column for each regex capture group |
:meth:`~Series.str.extractall` | Call re.findall on each element, returning DataFrame with one row for each match and one column for each regex capture group |
:meth:`~Series.str.len` | Compute string lengths |
:meth:`~Series.str.strip` | Equivalent to str.strip |
:meth:`~Series.str.rstrip` | Equivalent to str.rstrip |
:meth:`~Series.str.lstrip` | Equivalent to str.lstrip |
:meth:`~Series.str.partition` | Equivalent to str.partition |
:meth:`~Series.str.rpartition` | Equivalent to str.rpartition |
:meth:`~Series.str.lower` | Equivalent to str.lower |
:meth:`~Series.str.casefold` | Equivalent to str.casefold |
:meth:`~Series.str.upper` | Equivalent to str.upper |
:meth:`~Series.str.find` | Equivalent to str.find |
:meth:`~Series.str.rfind` | Equivalent to str.rfind |
:meth:`~Series.str.index` | Equivalent to str.index |
:meth:`~Series.str.rindex` | Equivalent to str.rindex |
:meth:`~Series.str.capitalize` | Equivalent to str.capitalize |
:meth:`~Series.str.swapcase` | Equivalent to str.swapcase |
:meth:`~Series.str.normalize` | Return Unicode normal form. Equivalent to unicodedata.normalize |
:meth:`~Series.str.translate` | Equivalent to str.translate |
:meth:`~Series.str.isalnum` | Equivalent to str.isalnum |
:meth:`~Series.str.isalpha` | Equivalent to str.isalpha |
:meth:`~Series.str.isdigit` | Equivalent to str.isdigit |
:meth:`~Series.str.isspace` | Equivalent to str.isspace |
:meth:`~Series.str.islower` | Equivalent to str.islower |
:meth:`~Series.str.isupper` | Equivalent to str.isupper |
:meth:`~Series.str.istitle` | Equivalent to str.istitle |
:meth:`~Series.str.isnumeric` | Equivalent to str.isnumeric |
:meth:`~Series.str.isdecimal` | Equivalent to str.isdecimal |