{{ header }}
Note
The examples below assume that you're using Jupyter.
This section demonstrates visualization through charting. For information on visualization of tabular data please see the section on Table Visualization.
We use the standard convention for referencing the matplotlib API:
.. ipython:: python import matplotlib.pyplot as plt plt.close("all")
We provide the basics in pandas to easily create decent looking plots. See the :ref:`ecosystem <ecosystem.visualization>` section for visualization libraries that go beyond the basics documented here.
Note
All calls to np.random
are seeded with 123456.
We will demonstrate the basics, see the :ref:`cookbook<cookbook.plotting>` for some advanced strategies.
The plot
method on Series and DataFrame is just a simple wrapper around
:meth:`plt.plot() <matplotlib.axes.Axes.plot>`:
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000)) ts = ts.cumsum() @savefig series_plot_basic.png ts.plot();
If the index consists of dates, it calls :meth:`gcf().autofmt_xdate() <matplotlib.figure.Figure.autofmt_xdate>` to try to format the x-axis nicely as per above.
On DataFrame, :meth:`~DataFrame.plot` is a convenience to plot all of the columns with labels:
.. ipython:: python :suppress: plt.close("all") np.random.seed(123456)
.. ipython:: python df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list("ABCD")) df = df.cumsum() plt.figure(); @savefig frame_plot_basic.png df.plot();
You can plot one column versus another using the x
and y
keywords in
:meth:`~DataFrame.plot`:
.. ipython:: python :suppress: plt.close("all") plt.figure() np.random.seed(123456)
.. ipython:: python df3 = pd.DataFrame(np.random.randn(1000, 2), columns=["B", "C"]).cumsum() df3["A"] = pd.Series(list(range(len(df)))) @savefig df_plot_xy.png df3.plot(x="A", y="B");
Note
For more formatting and styling options, see :ref:`formatting <visualization.formatting>` below.
.. ipython:: python :suppress: plt.close("all")
Plotting methods allow for a handful of plot styles other than the
default line plot. These methods can be provided as the kind
keyword argument to :meth:`~DataFrame.plot`, and include:
- :ref:`'bar' <visualization.barplot>` or :ref:`'barh' <visualization.barplot>` for bar plots
- :ref:`'hist' <visualization.hist>` for histogram
- :ref:`'box' <visualization.box>` for boxplot
- :ref:`'kde' <visualization.kde>` or :ref:`'density' <visualization.kde>` for density plots
- :ref:`'area' <visualization.area_plot>` for area plots
- :ref:`'scatter' <visualization.scatter>` for scatter plots
- :ref:`'hexbin' <visualization.hexbin>` for hexagonal bin plots
- :ref:`'pie' <visualization.pie>` for pie plots
For example, a bar plot can be created the following way:
.. ipython:: python plt.figure(); @savefig bar_plot_ex.png df.iloc[5].plot(kind="bar");
You can also create these other plots using the methods DataFrame.plot.<kind>
instead of providing the kind
keyword argument. This makes it easier to discover plot methods and the specific arguments they use:
.. ipython:: :verbatim: In [14]: df = pd.DataFrame() In [15]: df.plot.<TAB> # noqa: E225, E999 df.plot.area df.plot.barh df.plot.density df.plot.hist df.plot.line df.plot.scatter df.plot.bar df.plot.box df.plot.hexbin df.plot.kde df.plot.pie
In addition to these kind
s, there are the :ref:`DataFrame.hist() <visualization.hist>`,
and :ref:`DataFrame.boxplot() <visualization.box>` methods, which use a separate interface.
Finally, there are several :ref:`plotting functions <visualization.tools>` in pandas.plotting
that take a :class:`Series` or :class:`DataFrame` as an argument. These
include:
- :ref:`Scatter Matrix <visualization.scatter_matrix>`
- :ref:`Andrews Curves <visualization.andrews_curves>`
- :ref:`Parallel Coordinates <visualization.parallel_coordinates>`
- :ref:`Lag Plot <visualization.lag>`
- :ref:`Autocorrelation Plot <visualization.autocorrelation>`
- :ref:`Bootstrap Plot <visualization.bootstrap>`
- :ref:`RadViz <visualization.radviz>`
Plots may also be adorned with :ref:`errorbars <visualization.errorbars>` or :ref:`tables <visualization.table>`.
For labeled, non-time series data, you may wish to produce a bar plot:
.. ipython:: python plt.figure(); @savefig bar_plot_ex.png df.iloc[5].plot.bar(); plt.axhline(0, color="k");
Calling a DataFrame's :meth:`plot.bar() <DataFrame.plot.bar>` method produces a multiple bar plot:
.. ipython:: python :suppress: plt.close("all") plt.figure() np.random.seed(123456)
.. ipython:: python df2 = pd.DataFrame(np.random.rand(10, 4), columns=["a", "b", "c", "d"]) @savefig bar_plot_multi_ex.png df2.plot.bar();
To produce a stacked bar plot, pass stacked=True
:
.. ipython:: python :suppress: plt.close("all") plt.figure()
.. ipython:: python @savefig bar_plot_stacked_ex.png df2.plot.bar(stacked=True);
To get horizontal bar plots, use the barh
method:
.. ipython:: python :suppress: plt.close("all") plt.figure()
.. ipython:: python @savefig barh_plot_stacked_ex.png df2.plot.barh(stacked=True);
Histograms can be drawn by using the :meth:`DataFrame.plot.hist` and :meth:`Series.plot.hist` methods.
.. ipython:: python df4 = pd.DataFrame( { "a": np.random.randn(1000) + 1, "b": np.random.randn(1000), "c": np.random.randn(1000) - 1, }, columns=["a", "b", "c"], ) plt.figure(); @savefig hist_new.png df4.plot.hist(alpha=0.5);
.. ipython:: python :suppress: plt.close("all")
A histogram can be stacked using stacked=True
. Bin size can be changed
using the bins
keyword.
.. ipython:: python plt.figure(); @savefig hist_new_stacked.png df4.plot.hist(stacked=True, bins=20);
.. ipython:: python :suppress: plt.close("all")
You can pass other keywords supported by matplotlib hist
. For example,
horizontal and cumulative histograms can be drawn by
orientation='horizontal'
and cumulative=True
.
.. ipython:: python plt.figure(); @savefig hist_new_kwargs.png df4["a"].plot.hist(orientation="horizontal", cumulative=True);
.. ipython:: python :suppress: plt.close("all")
See the :meth:`hist <matplotlib.axes.Axes.hist>` method and the matplotlib hist documentation for more.
The existing interface DataFrame.hist
to plot histogram still can be used.
.. ipython:: python plt.figure(); @savefig hist_plot_ex.png df["A"].diff().hist();
.. ipython:: python :suppress: plt.close("all")
:meth:`DataFrame.hist` plots the histograms of the columns on multiple subplots:
.. ipython:: python plt.figure(); @savefig frame_hist_ex.png df.diff().hist(color="k", alpha=0.5, bins=50);
The by
keyword can be specified to plot grouped histograms:
.. ipython:: python :suppress: plt.close("all") plt.figure() np.random.seed(123456)
.. ipython:: python data = pd.Series(np.random.randn(1000)) @savefig grouped_hist.png data.hist(by=np.random.randint(0, 4, 1000), figsize=(6, 4));
.. ipython:: python :suppress: plt.close("all") np.random.seed(123456)
In addition, the by
keyword can also be specified in :meth:`DataFrame.plot.hist`.
.. versionchanged:: 1.4.0
.. ipython:: python data = pd.DataFrame( { "a": np.random.choice(["x", "y", "z"], 1000), "b": np.random.choice(["e", "f", "g"], 1000), "c": np.random.randn(1000), "d": np.random.randn(1000) - 1, }, ) @savefig grouped_hist_by.png data.plot.hist(by=["a", "b"], figsize=(10, 5));
.. ipython:: python :suppress: plt.close("all")
Boxplot can be drawn calling :meth:`Series.plot.box` and :meth:`DataFrame.plot.box`, or :meth:`DataFrame.boxplot` to visualize the distribution of values within each column.
For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1).
.. ipython:: python :suppress: plt.close("all") np.random.seed(123456)
.. ipython:: python df = pd.DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"]) @savefig box_plot_new.png df.plot.box();
Boxplot can be colorized by passing color
keyword. You can pass a dict
whose keys are boxes
, whiskers
, medians
and caps
.
If some keys are missing in the dict
, default colors are used
for the corresponding artists. Also, boxplot has sym
keyword to specify fliers style.
When you pass other type of arguments via color
keyword, it will be directly
passed to matplotlib for all the boxes
, whiskers
, medians
and caps
colorization.
The colors are applied to every boxes to be drawn. If you want more complicated colorization, you can get each drawn artists by passing :ref:`return_type <visualization.box.return>`.
.. ipython:: python color = { "boxes": "DarkGreen", "whiskers": "DarkOrange", "medians": "DarkBlue", "caps": "Gray", } @savefig box_new_colorize.png df.plot.box(color=color, sym="r+");
.. ipython:: python :suppress: plt.close("all")
Also, you can pass other keywords supported by matplotlib boxplot
.
For example, horizontal and custom-positioned boxplot can be drawn by
vert=False
and positions
keywords.
.. ipython:: python @savefig box_new_kwargs.png df.plot.box(vert=False, positions=[1, 4, 5, 6, 8]);
See the :meth:`boxplot <matplotlib.axes.Axes.boxplot>` method and the matplotlib boxplot documentation for more.
The existing interface DataFrame.boxplot
to plot boxplot still can be used.
.. ipython:: python :suppress: plt.close("all") np.random.seed(123456)
.. ipython:: python :okwarning: df = pd.DataFrame(np.random.rand(10, 5)) plt.figure(); @savefig box_plot_ex.png bp = df.boxplot()
You can create a stratified boxplot using the by
keyword argument to create
groupings. For instance,
.. ipython:: python :suppress: plt.close("all") np.random.seed(123456)
.. ipython:: python :okwarning: df = pd.DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"]) df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"]) plt.figure(); @savefig box_plot_ex2.png bp = df.boxplot(by="X")
You can also pass a subset of columns to plot, as well as group by multiple columns:
.. ipython:: python :suppress: plt.close("all") np.random.seed(123456)
.. ipython:: python :okwarning: df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"]) df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"]) df["Y"] = pd.Series(["A", "B", "A", "B", "A", "B", "A", "B", "A", "B"]) plt.figure(); @savefig box_plot_ex3.png bp = df.boxplot(column=["Col1", "Col2"], by=["X", "Y"])
.. ipython:: python :suppress: plt.close("all")
You could also create groupings with :meth:`DataFrame.plot.box`, for instance:
.. versionchanged:: 1.4.0
.. ipython:: python :suppress: plt.close("all") np.random.seed(123456)
.. ipython:: python :okwarning: df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"]) df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"]) plt.figure(); @savefig box_plot_ex4.png bp = df.plot.box(column=["Col1", "Col2"], by="X")
.. ipython:: python :suppress: plt.close("all")
In boxplot
, the return type can be controlled by the return_type
, keyword. The valid choices are {"axes", "dict", "both", None}
.
Faceting, created by DataFrame.boxplot
with the by
keyword, will affect the output type as well:
return_type |
Faceted | Output type |
---|---|---|
None |
No | axes |
None |
Yes | 2-D ndarray of axes |
'axes' |
No | axes |
'axes' |
Yes | Series of axes |
'dict' |
No | dict of artists |
'dict' |
Yes | Series of dicts of artists |
'both' |
No | namedtuple |
'both' |
Yes | Series of namedtuples |
Groupby.boxplot
always returns a Series
of return_type
.
.. ipython:: python :okwarning: np.random.seed(1234) df_box = pd.DataFrame(np.random.randn(50, 2)) df_box["g"] = np.random.choice(["A", "B"], size=50) df_box.loc[df_box["g"] == "B", 1] += 3 @savefig boxplot_groupby.png bp = df_box.boxplot(by="g")
.. ipython:: python :suppress: plt.close("all")
The subplots above are split by the numeric columns first, then the value of
the g
column. Below the subplots are first split by the value of g
,
then by the numeric columns.
.. ipython:: python :okwarning: @savefig groupby_boxplot_vis.png bp = df_box.groupby("g").boxplot()
.. ipython:: python :suppress: plt.close("all")
You can create area plots with :meth:`Series.plot.area` and :meth:`DataFrame.plot.area`. Area plots are stacked by default. To produce stacked area plot, each column must be either all positive or all negative values.
When input data contains NaN
, it will be automatically filled by 0. If you want to drop or fill by different values, use :func:`dataframe.dropna` or :func:`dataframe.fillna` before calling plot
.
.. ipython:: python :suppress: np.random.seed(123456) plt.figure()
.. ipython:: python df = pd.DataFrame(np.random.rand(10, 4), columns=["a", "b", "c", "d"]) @savefig area_plot_stacked.png df.plot.area();
To produce an unstacked plot, pass stacked=False
. Alpha value is set to 0.5 unless otherwise specified:
.. ipython:: python :suppress: plt.close("all") plt.figure()
.. ipython:: python @savefig area_plot_unstacked.png df.plot.area(stacked=False);
Scatter plot can be drawn by using the :meth:`DataFrame.plot.scatter` method.
Scatter plot requires numeric columns for the x and y axes.
These can be specified by the x
and y
keywords.
.. ipython:: python :suppress: np.random.seed(123456) plt.close("all") plt.figure()
.. ipython:: python df = pd.DataFrame(np.random.rand(50, 4), columns=["a", "b", "c", "d"]) df["species"] = pd.Categorical( ["setosa"] * 20 + ["versicolor"] * 20 + ["virginica"] * 10 ) @savefig scatter_plot.png df.plot.scatter(x="a", y="b");
To plot multiple column groups in a single axes, repeat plot
method specifying target ax
.
It is recommended to specify color
and label
keywords to distinguish each groups.
.. ipython:: python :okwarning: ax = df.plot.scatter(x="a", y="b", color="DarkBlue", label="Group 1") @savefig scatter_plot_repeated.png df.plot.scatter(x="c", y="d", color="DarkGreen", label="Group 2", ax=ax);
.. ipython:: python :suppress: plt.close("all")
The keyword c
may be given as the name of a column to provide colors for
each point:
.. ipython:: python @savefig scatter_plot_colored.png df.plot.scatter(x="a", y="b", c="c", s=50);
.. ipython:: python :suppress: plt.close("all")
If a categorical column is passed to c
, then a discrete colorbar will be produced:
.. versionadded:: 1.3.0
.. ipython:: python @savefig scatter_plot_categorical.png df.plot.scatter(x="a", y="b", c="species", cmap="viridis", s=50);
.. ipython:: python :suppress: plt.close("all")
You can pass other keywords supported by matplotlib
:meth:`scatter <matplotlib.axes.Axes.scatter>`. The example below shows a
bubble chart using a column of the DataFrame
as the bubble size.
.. ipython:: python @savefig scatter_plot_bubble.png df.plot.scatter(x="a", y="b", s=df["c"] * 200);
.. ipython:: python :suppress: plt.close("all")
See the :meth:`scatter <matplotlib.axes.Axes.scatter>` method and the matplotlib scatter documentation for more.
You can create hexagonal bin plots with :meth:`DataFrame.plot.hexbin`. Hexbin plots can be a useful alternative to scatter plots if your data are too dense to plot each point individually.
.. ipython:: python :suppress: plt.figure() np.random.seed(123456)
.. ipython:: python df = pd.DataFrame(np.random.randn(1000, 2), columns=["a", "b"]) df["b"] = df["b"] + np.arange(1000) @savefig hexbin_plot.png df.plot.hexbin(x="a", y="b", gridsize=25);
A useful keyword argument is gridsize
; it controls the number of hexagons
in the x-direction, and defaults to 100. A larger gridsize
means more, smaller
bins.
By default, a histogram of the counts around each (x, y)
point is computed.
You can specify alternative aggregations by passing values to the C
and
reduce_C_function
arguments. C
specifies the value at each (x, y)
point
and reduce_C_function
is a function of one argument that reduces all the
values in a bin to a single number (e.g. mean
, max
, sum
, std
). In this
example the positions are given by columns a
and b
, while the value is
given by column z
. The bins are aggregated with NumPy's max
function.
.. ipython:: python :suppress: plt.close("all") plt.figure() np.random.seed(123456)
.. ipython:: python df = pd.DataFrame(np.random.randn(1000, 2), columns=["a", "b"]) df["b"] = df["b"] + np.arange(1000) df["z"] = np.random.uniform(0, 3, 1000) @savefig hexbin_plot_agg.png df.plot.hexbin(x="a", y="b", C="z", reduce_C_function=np.max, gridsize=25);
.. ipython:: python :suppress: plt.close("all")
See the :meth:`hexbin <matplotlib.axes.Axes.hexbin>` method and the matplotlib hexbin documentation for more.
You can create a pie plot with :meth:`DataFrame.plot.pie` or :meth:`Series.plot.pie`.
If your data includes any NaN
, they will be automatically filled with 0.
A ValueError
will be raised if there are any negative values in your data.
.. ipython:: python :suppress: np.random.seed(123456) plt.figure()
.. ipython:: python :okwarning: series = pd.Series(3 * np.random.rand(4), index=["a", "b", "c", "d"], name="series") @savefig series_pie_plot.png series.plot.pie(figsize=(6, 6));
.. ipython:: python :suppress: plt.close("all")
For pie plots it's best to use square figures, i.e. a figure aspect ratio 1.
You can create the figure with equal width and height, or force the aspect ratio
to be equal after plotting by calling ax.set_aspect('equal')
on the returned
axes
object.
Note that pie plot with :class:`DataFrame` requires that you either specify a
target column by the y
argument or subplots=True
. When y
is
specified, pie plot of selected column will be drawn. If subplots=True
is
specified, pie plots for each column are drawn as subplots. A legend will be
drawn in each pie plots by default; specify legend=False
to hide it.
.. ipython:: python :suppress: np.random.seed(123456) plt.figure()
.. ipython:: python df = pd.DataFrame( 3 * np.random.rand(4, 2), index=["a", "b", "c", "d"], columns=["x", "y"] ) @savefig df_pie_plot.png df.plot.pie(subplots=True, figsize=(8, 4));
.. ipython:: python :suppress: plt.close("all")
You can use the labels
and colors
keywords to specify the labels and colors of each wedge.
Warning
Most pandas plots use the label
and color
arguments (note the lack of "s" on those).
To be consistent with :func:`matplotlib.pyplot.pie` you must use labels
and colors
.
If you want to hide wedge labels, specify labels=None
.
If fontsize
is specified, the value will be applied to wedge labels.
Also, other keywords supported by :func:`matplotlib.pyplot.pie` can be used.
.. ipython:: python :suppress: plt.figure()
.. ipython:: python @savefig series_pie_plot_options.png series.plot.pie( labels=["AA", "BB", "CC", "DD"], colors=["r", "g", "b", "c"], autopct="%.2f", fontsize=20, figsize=(6, 6), );
If you pass values whose sum total is less than 1.0 they will be rescaled so that they sum to 1.
.. ipython:: python :suppress: plt.close("all") plt.figure()
.. ipython:: python :okwarning: series = pd.Series([0.1] * 4, index=["a", "b", "c", "d"], name="series2") @savefig series_pie_plot_semi.png series.plot.pie(figsize=(6, 6));
See the matplotlib pie documentation for more.
.. ipython:: python :suppress: plt.close("all")
pandas tries to be pragmatic about plotting DataFrames
or Series
that contain missing data. Missing values are dropped, left out, or filled
depending on the plot type.
Plot Type | NaN Handling |
---|---|
Line | Leave gaps at NaNs |
Line (stacked) | Fill 0's |
Bar | Fill 0's |
Scatter | Drop NaNs |
Histogram | Drop NaNs (column-wise) |
Box | Drop NaNs (column-wise) |
Area | Fill 0's |
KDE | Drop NaNs (column-wise) |
Hexbin | Drop NaNs |
Pie | Fill 0's |
If any of these defaults are not what you want, or if you want to be explicit about how missing values are handled, consider using :meth:`~pandas.DataFrame.fillna` or :meth:`~pandas.DataFrame.dropna` before plotting.
These functions can be imported from pandas.plotting
and take a :class:`Series` or :class:`DataFrame` as an argument.
You can create a scatter plot matrix using the
scatter_matrix
method in pandas.plotting
:
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python from pandas.plotting import scatter_matrix df = pd.DataFrame(np.random.randn(1000, 4), columns=["a", "b", "c", "d"]) @savefig scatter_matrix_kde.png scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal="kde");
.. ipython:: python :suppress: plt.close("all")
You can create density plots using the :meth:`Series.plot.kde` and :meth:`DataFrame.plot.kde` methods.
.. ipython:: python :suppress: plt.figure() np.random.seed(123456)
.. ipython:: python ser = pd.Series(np.random.randn(1000)) @savefig kde_plot.png ser.plot.kde();
.. ipython:: python :suppress: plt.close("all")
Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes of samples as coefficients for Fourier series, see the Wikipedia entry for more information. By coloring these curves differently for each class it is possible to visualize data clustering. Curves belonging to samples of the same class will usually be closer together and form larger structures.
Note: The "Iris" dataset is available here.
.. ipython:: python from pandas.plotting import andrews_curves data = pd.read_csv("data/iris.data") plt.figure(); @savefig andrews_curves.png andrews_curves(data, "Name");
Parallel coordinates is a plotting technique for plotting multivariate data, see the Wikipedia entry for an introduction. Parallel coordinates allows one to see clusters in data and to estimate other statistics visually. Using parallel coordinates points are represented as connected line segments. Each vertical line represents one attribute. One set of connected line segments represents one data point. Points that tend to cluster will appear closer together.
.. ipython:: python from pandas.plotting import parallel_coordinates data = pd.read_csv("data/iris.data") plt.figure(); @savefig parallel_coordinates.png parallel_coordinates(data, "Name");
.. ipython:: python :suppress: plt.close("all")
Lag plots are used to check if a data set or time series is random. Random
data should not exhibit any structure in the lag plot. Non-random structure
implies that the underlying data are not random. The lag
argument may
be passed, and when lag=1
the plot is essentially data[:-1]
vs.
data[1:]
.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python from pandas.plotting import lag_plot plt.figure(); spacing = np.linspace(-99 * np.pi, 99 * np.pi, num=1000) data = pd.Series(0.1 * np.random.rand(1000) + 0.9 * np.sin(spacing)) @savefig lag_plot.png lag_plot(data);
.. ipython:: python :suppress: plt.close("all")
Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrelations for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is 99% confidence band. See the Wikipedia entry for more about autocorrelation plots.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python from pandas.plotting import autocorrelation_plot plt.figure(); spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000) data = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing)) @savefig autocorrelation_plot.png autocorrelation_plot(data);
.. ipython:: python :suppress: plt.close("all")
Bootstrap plots are used to visually assess the uncertainty of a statistic, such as mean, median, midrange, etc. A random subset of a specified size is selected from a data set, the statistic in question is computed for this subset and the process is repeated a specified number of times. Resulting plots and histograms are what constitutes the bootstrap plot.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python from pandas.plotting import bootstrap_plot data = pd.Series(np.random.rand(1000)) @savefig bootstrap_plot.png bootstrap_plot(data, size=50, samples=500, color="grey");
.. ipython:: python :suppress: plt.close("all")
RadViz is a way of visualizing multi-variate data. It is based on a simple spring tension minimization algorithm. Basically you set up a bunch of points in a plane. In our case they are equally spaced on a unit circle. Each point represents a single attribute. You then pretend that each sample in the data set is attached to each of these points by a spring, the stiffness of which is proportional to the numerical value of that attribute (they are normalized to unit interval). The point in the plane, where our sample settles to (where the forces acting on our sample are at an equilibrium) is where a dot representing our sample will be drawn. Depending on which class that sample belongs it will be colored differently. See the R package Radviz for more information.
Note: The "Iris" dataset is available here.
.. ipython:: python from pandas.plotting import radviz data = pd.read_csv("data/iris.data") plt.figure(); @savefig radviz.png radviz(data, "Name");
.. ipython:: python :suppress: plt.close("all")
From version 1.5 and up, matplotlib offers a range of pre-configured plotting styles. Setting the
style can be used to easily give plots the general look that you want.
Setting the style is as easy as calling matplotlib.style.use(my_plot_style)
before
creating your plot. For example you could write matplotlib.style.use('ggplot')
for ggplot-style
plots.
You can see the various available style names at matplotlib.style.available
and it's very
easy to try them out.
Most plotting methods have a set of keyword arguments that control the layout and formatting of the returned plot:
.. ipython:: python plt.figure(); @savefig series_plot_basic2.png ts.plot(style="k--", label="Series");
.. ipython:: python :suppress: plt.close("all")
For each kind of plot (e.g. line
, bar
, scatter
) any additional arguments
keywords are passed along to the corresponding matplotlib function
(:meth:`ax.plot() <matplotlib.axes.Axes.plot>`,
:meth:`ax.bar() <matplotlib.axes.Axes.bar>`,
:meth:`ax.scatter() <matplotlib.axes.Axes.scatter>`). These can be used
to control additional styling, beyond what pandas provides.
You may set the legend
argument to False
to hide the legend, which is
shown by default.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list("ABCD")) df = df.cumsum() @savefig frame_plot_basic_noleg.png df.plot(legend=False);
.. ipython:: python :suppress: plt.close("all")
.. versionadded:: 1.1.0
You may set the xlabel
and ylabel
arguments to give the plot custom labels
for x and y axis. By default, pandas will pick up index name as xlabel, while leaving
it empty for ylabel.
.. ipython:: python :suppress: plt.figure();
.. ipython:: python df.plot(); @savefig plot_xlabel_ylabel.png df.plot(xlabel="new x", ylabel="new y");
.. ipython:: python :suppress: plt.close("all")
You may pass logy
to get a log-scale Y axis.
.. ipython:: python :suppress: plt.figure() np.random.seed(123456)
.. ipython:: python ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000)) ts = np.exp(ts.cumsum()) @savefig series_plot_logy.png ts.plot(logy=True);
.. ipython:: python :suppress: plt.close("all")
See also the logx
and loglog
keyword arguments.
To plot data on a secondary y-axis, use the secondary_y
keyword:
.. ipython:: python :suppress: plt.figure()
.. ipython:: python df["A"].plot(); @savefig series_plot_secondary_y.png df["B"].plot(secondary_y=True, style="g");
.. ipython:: python :suppress: plt.close("all")
To plot some columns in a DataFrame
, give the column names to the secondary_y
keyword:
.. ipython:: python plt.figure(); ax = df.plot(secondary_y=["A", "B"]) ax.set_ylabel("CD scale"); @savefig frame_plot_secondary_y.png ax.right_ax.set_ylabel("AB scale");
.. ipython:: python :suppress: plt.close("all")
Note that the columns plotted on the secondary y-axis is automatically marked
with "(right)" in the legend. To turn off the automatic marking, use the
mark_right=False
keyword:
.. ipython:: python plt.figure(); @savefig frame_plot_secondary_y_no_right.png df.plot(secondary_y=["A", "B"], mark_right=False);
.. ipython:: python :suppress: plt.close("all")
pandas provides custom formatters for timeseries plots. These change the
formatting of the axis labels for dates and times. By default,
the custom formatters are applied only to plots created by pandas with
:meth:`DataFrame.plot` or :meth:`Series.plot`. To have them apply to all
plots, including those made by matplotlib, set the option
pd.options.plotting.matplotlib.register_converters = True
or use
:meth:`pandas.plotting.register_matplotlib_converters`.
pandas includes automatic tick resolution adjustment for regular frequency
time-series data. For limited cases where pandas cannot infer the frequency
information (e.g., in an externally created twinx
), you can choose to
suppress this behavior for alignment purposes.
Here is the default behavior, notice how the x-axis tick labeling is performed:
.. ipython:: python plt.figure(); @savefig ser_plot_suppress.png df["A"].plot();
.. ipython:: python :suppress: plt.close("all")
Using the x_compat
parameter, you can suppress this behavior:
.. ipython:: python plt.figure(); @savefig ser_plot_suppress_parm.png df["A"].plot(x_compat=True);
.. ipython:: python :suppress: plt.close("all")
If you have more than one plot that needs to be suppressed, the use
method
in pandas.plotting.plot_params
can be used in a with
statement:
.. ipython:: python plt.figure(); @savefig ser_plot_suppress_context.png with pd.plotting.plot_params.use("x_compat", True): df["A"].plot(color="r") df["B"].plot(color="g") df["C"].plot(color="b")
.. ipython:: python :suppress: plt.close("all")
TimedeltaIndex
now uses the native matplotlib
tick locator methods, it is useful to call the automatic
date tick adjustment from matplotlib for figures whose ticklabels overlap.
See the :meth:`autofmt_xdate <matplotlib.figure.autofmt_xdate>` method and the matplotlib documentation for more.
Each Series
in a DataFrame
can be plotted on a different axis
with the subplots
keyword:
.. ipython:: python @savefig frame_plot_subplots.png df.plot(subplots=True, figsize=(6, 6));
.. ipython:: python :suppress: plt.close("all")
The layout of subplots can be specified by the layout
keyword. It can accept
(rows, columns)
. The layout
keyword can be used in
hist
and boxplot
also. If the input is invalid, a ValueError
will be raised.
The number of axes which can be contained by rows x columns specified by layout
must be
larger than the number of required subplots. If layout can contain more axes than required,
blank axes are not drawn. Similar to a NumPy array's reshape
method, you
can use -1
for one dimension to automatically calculate the number of rows
or columns needed, given the other.
.. ipython:: python @savefig frame_plot_subplots_layout.png df.plot(subplots=True, layout=(2, 3), figsize=(6, 6), sharex=False);
.. ipython:: python :suppress: plt.close("all")
The above example is identical to using:
.. ipython:: python df.plot(subplots=True, layout=(2, -1), figsize=(6, 6), sharex=False);
.. ipython:: python :suppress: plt.close("all")
The required number of columns (3) is inferred from the number of series to plot and the given number of rows (2).
You can pass multiple axes created beforehand as list-like via ax
keyword.
This allows more complicated layouts.
The passed axes must be the same number as the subplots being drawn.
When multiple axes are passed via the ax
keyword, layout
, sharex
and sharey
keywords
don't affect to the output. You should explicitly pass sharex=False
and sharey=False
,
otherwise you will see a warning.
.. ipython:: python fig, axes = plt.subplots(4, 4, figsize=(9, 9)) plt.subplots_adjust(wspace=0.5, hspace=0.5) target1 = [axes[0][0], axes[1][1], axes[2][2], axes[3][3]] target2 = [axes[3][0], axes[2][1], axes[1][2], axes[0][3]] df.plot(subplots=True, ax=target1, legend=False, sharex=False, sharey=False); @savefig frame_plot_subplots_multi_ax.png (-df).plot(subplots=True, ax=target2, legend=False, sharex=False, sharey=False);
.. ipython:: python :suppress: plt.close("all")
Another option is passing an ax
argument to :meth:`Series.plot` to plot on a particular axis:
.. ipython:: python :suppress: np.random.seed(123456) ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000)) ts = ts.cumsum() df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list("ABCD")) df = df.cumsum()
.. ipython:: python :suppress: plt.close("all")
.. ipython:: python fig, axes = plt.subplots(nrows=2, ncols=2) plt.subplots_adjust(wspace=0.2, hspace=0.5) df["A"].plot(ax=axes[0, 0]); axes[0, 0].set_title("A"); df["B"].plot(ax=axes[0, 1]); axes[0, 1].set_title("B"); df["C"].plot(ax=axes[1, 0]); axes[1, 0].set_title("C"); df["D"].plot(ax=axes[1, 1]); @savefig series_plot_multi.png axes[1, 1].set_title("D");
.. ipython:: python :suppress: plt.close("all")
Plotting with error bars is supported in :meth:`DataFrame.plot` and :meth:`Series.plot`.
Horizontal and vertical error bars can be supplied to the xerr
and yerr
keyword arguments to :meth:`~DataFrame.plot()`. The error values can be specified using a variety of formats:
- As a :class:`DataFrame` or
dict
of errors with column names matching thecolumns
attribute of the plotting :class:`DataFrame` or matching thename
attribute of the :class:`Series`. - As a
str
indicating which of the columns of plotting :class:`DataFrame` contain the error values. - As raw values (
list
,tuple
, ornp.ndarray
). Must be the same length as the plotting :class:`DataFrame`/:class:`Series`.
Here is an example of one way to easily plot group means with standard deviations from the raw data.
.. ipython:: python # Generate the data ix3 = pd.MultiIndex.from_arrays( [ ["a", "a", "a", "a", "a", "b", "b", "b", "b", "b"], ["foo", "foo", "foo", "bar", "bar", "foo", "foo", "bar", "bar", "bar"], ], names=["letter", "word"], ) df3 = pd.DataFrame( { "data1": [9, 3, 2, 4, 3, 2, 4, 6, 3, 2], "data2": [9, 6, 5, 7, 5, 4, 5, 6, 5, 1], }, index=ix3, ) # Group by index labels and take the means and standard deviations # for each group gp3 = df3.groupby(level=("letter", "word")) means = gp3.mean() errors = gp3.std() means errors # Plot fig, ax = plt.subplots() @savefig errorbar_example.png means.plot.bar(yerr=errors, ax=ax, capsize=4, rot=0);
.. ipython:: python :suppress: plt.close("all")
Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a N
length :class:`Series`, a 2xN
array should be provided indicating lower and upper (or left and right) errors. For a MxN
:class:`DataFrame`, asymmetrical errors should be in a Mx2xN
array.
Here is an example of one way to plot the min/max range using asymmetrical error bars.
.. ipython:: python mins = gp3.min() maxs = gp3.max() # errors should be positive, and defined in the order of lower, upper errors = [[means[c] - mins[c], maxs[c] - means[c]] for c in df3.columns] # Plot fig, ax = plt.subplots() @savefig errorbar_asymmetrical_example.png means.plot.bar(yerr=errors, ax=ax, capsize=4, rot=0);
.. ipython:: python :suppress: plt.close("all")
Plotting with matplotlib table is now supported in :meth:`DataFrame.plot` and :meth:`Series.plot` with a table
keyword. The table
keyword can accept bool
, :class:`DataFrame` or :class:`Series`. The simple way to draw a table is to specify table=True
. Data will be transposed to meet matplotlib's default layout.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python fig, ax = plt.subplots(1, 1, figsize=(7, 6.5)) df = pd.DataFrame(np.random.rand(5, 3), columns=["a", "b", "c"]) ax.xaxis.tick_top() # Display x-axis ticks on top. @savefig line_plot_table_true.png df.plot(table=True, ax=ax);
.. ipython:: python :suppress: plt.close("all")
Also, you can pass a different :class:`DataFrame` or :class:`Series` to the
table
keyword. The data will be drawn as displayed in print method
(not transposed automatically). If required, it should be transposed manually
as seen in the example below.
.. ipython:: python fig, ax = plt.subplots(1, 1, figsize=(7, 6.75)) ax.xaxis.tick_top() # Display x-axis ticks on top. @savefig line_plot_table_data.png df.plot(table=np.round(df.T, 2), ax=ax);
.. ipython:: python :suppress: plt.close("all")
There also exists a helper function pandas.plotting.table
, which creates a
table from :class:`DataFrame` or :class:`Series`, and adds it to an
matplotlib.Axes
instance. This function can accept keywords which the
matplotlib table has.
.. ipython:: python from pandas.plotting import table fig, ax = plt.subplots(1, 1) table(ax, np.round(df.describe(), 2), loc="upper right", colWidths=[0.2, 0.2, 0.2]); @savefig line_plot_table_describe.png df.plot(ax=ax, ylim=(0, 2), legend=None);
.. ipython:: python :suppress: plt.close("all")
Note: You can get table instances on the axes using axes.tables
property for further decorations. See the matplotlib table documentation for more.
A potential issue when plotting a large number of columns is that it can be
difficult to distinguish some series due to repetition in the default colors. To
remedy this, DataFrame
plotting supports the use of the colormap
argument,
which accepts either a Matplotlib colormap
or a string that is a name of a colormap registered with Matplotlib. A
visualization of the default matplotlib colormaps is available here.
As matplotlib does not directly support colormaps for line-based plots, the
colors are selected based on an even spacing determined by the number of columns
in the DataFrame
. There is no consideration made for background color, so some
colormaps will produce lines that are not easily visible.
To use the cubehelix colormap, we can pass colormap='cubehelix'
.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python df = pd.DataFrame(np.random.randn(1000, 10), index=ts.index) df = df.cumsum() plt.figure(); @savefig cubehelix.png df.plot(colormap="cubehelix");
.. ipython:: python :suppress: plt.close("all")
Alternatively, we can pass the colormap itself:
.. ipython:: python from matplotlib import cm plt.figure(); @savefig cubehelix_cm.png df.plot(colormap=cm.cubehelix);
.. ipython:: python :suppress: plt.close("all")
Colormaps can also be used other plot types, like bar charts:
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python dd = pd.DataFrame(np.random.randn(10, 10)).map(abs) dd = dd.cumsum() plt.figure(); @savefig greens.png dd.plot.bar(colormap="Greens");
.. ipython:: python :suppress: plt.close("all")
Parallel coordinates charts:
.. ipython:: python plt.figure(); @savefig parallel_gist_rainbow.png parallel_coordinates(data, "Name", colormap="gist_rainbow");
.. ipython:: python :suppress: plt.close("all")
Andrews curves charts:
.. ipython:: python plt.figure(); @savefig andrews_curve_winter.png andrews_curves(data, "Name", colormap="winter");
.. ipython:: python :suppress: plt.close("all")
In some situations it may still be preferable or necessary to prepare plots
directly with matplotlib, for instance when a certain type of plot or
customization is not (yet) supported by pandas. Series
and DataFrame
objects behave like arrays and can therefore be passed directly to
matplotlib functions without explicit casts.
pandas also automatically registers formatters and locators that recognize date indices, thereby extending date and time support to practically all plot types available in matplotlib. Although this formatting does not provide the same level of refinement you would get when plotting via pandas, it can be faster when plotting a large number of points.
.. ipython:: python :suppress: np.random.seed(123456)
.. ipython:: python price = pd.Series( np.random.randn(150).cumsum(), index=pd.date_range("2000-1-1", periods=150, freq="B"), ) ma = price.rolling(20).mean() mstd = price.rolling(20).std() plt.figure(); plt.plot(price.index, price, "k"); plt.plot(ma.index, ma, "b"); @savefig bollinger.png plt.fill_between(mstd.index, ma - 2 * mstd, ma + 2 * mstd, color="b", alpha=0.2);
.. ipython:: python :suppress: plt.close("all")
Starting in version 0.25, pandas can be extended with third-party plotting backends. The main idea is letting users select a plotting backend different than the provided one based on Matplotlib.
This can be done by passing 'backend.module' as the argument backend
in plot
function. For example:
>>> Series([1, 2, 3]).plot(backend="backend.module")
Alternatively, you can also set this option globally, do you don't need to specify
the keyword in each plot
call. For example:
>>> pd.set_option("plotting.backend", "backend.module")
>>> pd.Series([1, 2, 3]).plot()
Or:
>>> pd.options.plotting.backend = "backend.module"
>>> pd.Series([1, 2, 3]).plot()
This would be more or less equivalent to:
>>> import backend.module
>>> backend.module.plot(pd.Series([1, 2, 3]))
The backend module can then use other visualization tools (Bokeh, Altair, hvplot,...) to generate the plots. Some libraries implementing a backend for pandas are listed on the ecosystem :ref:`ecosystem.visualization` page.
Developers guide can be found at https://pandas.pydata.org/docs/dev/development/extending.html#plotting-backends