forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_alter_index.py
560 lines (425 loc) · 17.5 KB
/
test_alter_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
from datetime import datetime
import numpy as np
from numpy import nan
import pytest
from pandas.compat import lrange
import pandas as pd
from pandas import Categorical, Series, date_range, isna
import pandas.util.testing as tm
from pandas.util.testing import assert_series_equal
@pytest.mark.parametrize(
'first_slice,second_slice', [
[[2, None], [None, -5]],
[[None, 0], [None, -5]],
[[None, -5], [None, 0]],
[[None, 0], [None, 0]]
])
@pytest.mark.parametrize('fill', [None, -1])
def test_align(test_data, first_slice, second_slice, join_type, fill):
a = test_data.ts[slice(*first_slice)]
b = test_data.ts[slice(*second_slice)]
aa, ab = a.align(b, join=join_type, fill_value=fill)
join_index = a.index.join(b.index, how=join_type)
if fill is not None:
diff_a = aa.index.difference(join_index)
diff_b = ab.index.difference(join_index)
if len(diff_a) > 0:
assert (aa.reindex(diff_a) == fill).all()
if len(diff_b) > 0:
assert (ab.reindex(diff_b) == fill).all()
ea = a.reindex(join_index)
eb = b.reindex(join_index)
if fill is not None:
ea = ea.fillna(fill)
eb = eb.fillna(fill)
assert_series_equal(aa, ea)
assert_series_equal(ab, eb)
assert aa.name == 'ts'
assert ea.name == 'ts'
assert ab.name == 'ts'
assert eb.name == 'ts'
@pytest.mark.parametrize(
'first_slice,second_slice', [
[[2, None], [None, -5]],
[[None, 0], [None, -5]],
[[None, -5], [None, 0]],
[[None, 0], [None, 0]]
])
@pytest.mark.parametrize('method', ['pad', 'bfill'])
@pytest.mark.parametrize('limit', [None, 1])
def test_align_fill_method(test_data,
first_slice, second_slice,
join_type, method, limit):
a = test_data.ts[slice(*first_slice)]
b = test_data.ts[slice(*second_slice)]
aa, ab = a.align(b, join=join_type, method=method, limit=limit)
join_index = a.index.join(b.index, how=join_type)
ea = a.reindex(join_index)
eb = b.reindex(join_index)
ea = ea.fillna(method=method, limit=limit)
eb = eb.fillna(method=method, limit=limit)
assert_series_equal(aa, ea)
assert_series_equal(ab, eb)
def test_align_nocopy(test_data):
b = test_data.ts[:5].copy()
# do copy
a = test_data.ts.copy()
ra, _ = a.align(b, join='left')
ra[:5] = 5
assert not (a[:5] == 5).any()
# do not copy
a = test_data.ts.copy()
ra, _ = a.align(b, join='left', copy=False)
ra[:5] = 5
assert (a[:5] == 5).all()
# do copy
a = test_data.ts.copy()
b = test_data.ts[:5].copy()
_, rb = a.align(b, join='right')
rb[:3] = 5
assert not (b[:3] == 5).any()
# do not copy
a = test_data.ts.copy()
b = test_data.ts[:5].copy()
_, rb = a.align(b, join='right', copy=False)
rb[:2] = 5
assert (b[:2] == 5).all()
def test_align_same_index(test_data):
a, b = test_data.ts.align(test_data.ts, copy=False)
assert a.index is test_data.ts.index
assert b.index is test_data.ts.index
a, b = test_data.ts.align(test_data.ts, copy=True)
assert a.index is not test_data.ts.index
assert b.index is not test_data.ts.index
def test_align_multiindex():
# GH 10665
midx = pd.MultiIndex.from_product([range(2), range(3), range(2)],
names=('a', 'b', 'c'))
idx = pd.Index(range(2), name='b')
s1 = pd.Series(np.arange(12, dtype='int64'), index=midx)
s2 = pd.Series(np.arange(2, dtype='int64'), index=idx)
# these must be the same results (but flipped)
res1l, res1r = s1.align(s2, join='left')
res2l, res2r = s2.align(s1, join='right')
expl = s1
tm.assert_series_equal(expl, res1l)
tm.assert_series_equal(expl, res2r)
expr = pd.Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx)
tm.assert_series_equal(expr, res1r)
tm.assert_series_equal(expr, res2l)
res1l, res1r = s1.align(s2, join='right')
res2l, res2r = s2.align(s1, join='left')
exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)],
names=('a', 'b', 'c'))
expl = pd.Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx)
tm.assert_series_equal(expl, res1l)
tm.assert_series_equal(expl, res2r)
expr = pd.Series([0, 0, 1, 1] * 2, index=exp_idx)
tm.assert_series_equal(expr, res1r)
tm.assert_series_equal(expr, res2l)
def test_reindex(test_data):
identity = test_data.series.reindex(test_data.series.index)
# __array_interface__ is not defined for older numpies
# and on some pythons
try:
assert np.may_share_memory(test_data.series.index, identity.index)
except AttributeError:
pass
assert identity.index.is_(test_data.series.index)
assert identity.index.identical(test_data.series.index)
subIndex = test_data.series.index[10:20]
subSeries = test_data.series.reindex(subIndex)
for idx, val in subSeries.items():
assert val == test_data.series[idx]
subIndex2 = test_data.ts.index[10:20]
subTS = test_data.ts.reindex(subIndex2)
for idx, val in subTS.items():
assert val == test_data.ts[idx]
stuffSeries = test_data.ts.reindex(subIndex)
assert np.isnan(stuffSeries).all()
# This is extremely important for the Cython code to not screw up
nonContigIndex = test_data.ts.index[::2]
subNonContig = test_data.ts.reindex(nonContigIndex)
for idx, val in subNonContig.items():
assert val == test_data.ts[idx]
# return a copy the same index here
result = test_data.ts.reindex()
assert not (result is test_data.ts)
def test_reindex_nan():
ts = Series([2, 3, 5, 7], index=[1, 4, nan, 8])
i, j = [nan, 1, nan, 8, 4, nan], [2, 0, 2, 3, 1, 2]
assert_series_equal(ts.reindex(i), ts.iloc[j])
ts.index = ts.index.astype('object')
# reindex coerces index.dtype to float, loc/iloc doesn't
assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False)
def test_reindex_series_add_nat():
rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s')
series = Series(rng)
result = series.reindex(lrange(15))
assert np.issubdtype(result.dtype, np.dtype('M8[ns]'))
mask = result.isna()
assert mask[-5:].all()
assert not mask[:-5].any()
def test_reindex_with_datetimes():
rng = date_range('1/1/2000', periods=20)
ts = Series(np.random.randn(20), index=rng)
result = ts.reindex(list(ts.index[5:10]))
expected = ts[5:10]
tm.assert_series_equal(result, expected)
result = ts[list(ts.index[5:10])]
tm.assert_series_equal(result, expected)
def test_reindex_corner(test_data):
# (don't forget to fix this) I think it's fixed
test_data.empty.reindex(test_data.ts.index, method='pad') # it works
# corner case: pad empty series
reindexed = test_data.empty.reindex(test_data.ts.index, method='pad')
# pass non-Index
reindexed = test_data.ts.reindex(list(test_data.ts.index))
assert_series_equal(test_data.ts, reindexed)
# bad fill method
ts = test_data.ts[::2]
msg = (r"Invalid fill method\. Expecting pad \(ffill\), backfill"
r" \(bfill\) or nearest\. Got foo")
with pytest.raises(ValueError, match=msg):
ts.reindex(test_data.ts.index, method='foo')
def test_reindex_pad():
s = Series(np.arange(10), dtype='int64')
s2 = s[::2]
reindexed = s2.reindex(s.index, method='pad')
reindexed2 = s2.reindex(s.index, method='ffill')
assert_series_equal(reindexed, reindexed2)
expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10))
assert_series_equal(reindexed, expected)
# GH4604
s = Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e'])
new_index = ['a', 'g', 'c', 'f']
expected = Series([1, 1, 3, 3], index=new_index)
# this changes dtype because the ffill happens after
result = s.reindex(new_index).ffill()
assert_series_equal(result, expected.astype('float64'))
result = s.reindex(new_index).ffill(downcast='infer')
assert_series_equal(result, expected)
expected = Series([1, 5, 3, 5], index=new_index)
result = s.reindex(new_index, method='ffill')
assert_series_equal(result, expected)
# inference of new dtype
s = Series([True, False, False, True], index=list('abcd'))
new_index = 'agc'
result = s.reindex(list(new_index)).ffill()
expected = Series([True, True, False], index=list(new_index))
assert_series_equal(result, expected)
# GH4618 shifted series downcasting
s = Series(False, index=lrange(0, 5))
result = s.shift(1).fillna(method='bfill')
expected = Series(False, index=lrange(0, 5))
assert_series_equal(result, expected)
def test_reindex_nearest():
s = Series(np.arange(10, dtype='int64'))
target = [0.1, 0.9, 1.5, 2.0]
actual = s.reindex(target, method='nearest')
expected = Series(np.around(target).astype('int64'), target)
assert_series_equal(expected, actual)
actual = s.reindex_like(actual, method='nearest')
assert_series_equal(expected, actual)
actual = s.reindex_like(actual, method='nearest', tolerance=1)
assert_series_equal(expected, actual)
actual = s.reindex_like(actual, method='nearest',
tolerance=[1, 2, 3, 4])
assert_series_equal(expected, actual)
actual = s.reindex(target, method='nearest', tolerance=0.2)
expected = Series([0, 1, np.nan, 2], target)
assert_series_equal(expected, actual)
actual = s.reindex(target, method='nearest',
tolerance=[0.3, 0.01, 0.4, 3])
expected = Series([0, np.nan, np.nan, 2], target)
assert_series_equal(expected, actual)
def test_reindex_backfill():
pass
def test_reindex_int(test_data):
ts = test_data.ts[::2]
int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index)
# this should work fine
reindexed_int = int_ts.reindex(test_data.ts.index)
# if NaNs introduced
assert reindexed_int.dtype == np.float_
# NO NaNs introduced
reindexed_int = int_ts.reindex(int_ts.index[::2])
assert reindexed_int.dtype == np.int_
def test_reindex_bool(test_data):
# A series other than float, int, string, or object
ts = test_data.ts[::2]
bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index)
# this should work fine
reindexed_bool = bool_ts.reindex(test_data.ts.index)
# if NaNs introduced
assert reindexed_bool.dtype == np.object_
# NO NaNs introduced
reindexed_bool = bool_ts.reindex(bool_ts.index[::2])
assert reindexed_bool.dtype == np.bool_
def test_reindex_bool_pad(test_data):
# fail
ts = test_data.ts[5:]
bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index)
filled_bool = bool_ts.reindex(test_data.ts.index, method='pad')
assert isna(filled_bool[:5]).all()
def test_reindex_categorical():
index = date_range('20000101', periods=3)
# reindexing to an invalid Categorical
s = Series(['a', 'b', 'c'], dtype='category')
result = s.reindex(index)
expected = Series(Categorical(values=[np.nan, np.nan, np.nan],
categories=['a', 'b', 'c']))
expected.index = index
tm.assert_series_equal(result, expected)
# partial reindexing
expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b',
'c']))
expected.index = [1, 2]
result = s.reindex([1, 2])
tm.assert_series_equal(result, expected)
expected = Series(Categorical(
values=['c', np.nan], categories=['a', 'b', 'c']))
expected.index = [2, 3]
result = s.reindex([2, 3])
tm.assert_series_equal(result, expected)
def test_reindex_like(test_data):
other = test_data.ts[::2]
assert_series_equal(test_data.ts.reindex(other.index),
test_data.ts.reindex_like(other))
# GH 7179
day1 = datetime(2013, 3, 5)
day2 = datetime(2013, 5, 5)
day3 = datetime(2014, 3, 5)
series1 = Series([5, None, None], [day1, day2, day3])
series2 = Series([None, None], [day1, day3])
result = series1.reindex_like(series2, method='pad')
expected = Series([5, np.nan], index=[day1, day3])
assert_series_equal(result, expected)
def test_reindex_fill_value():
# -----------------------------------------------------------
# floats
floats = Series([1., 2., 3.])
result = floats.reindex([1, 2, 3])
expected = Series([2., 3., np.nan], index=[1, 2, 3])
assert_series_equal(result, expected)
result = floats.reindex([1, 2, 3], fill_value=0)
expected = Series([2., 3., 0], index=[1, 2, 3])
assert_series_equal(result, expected)
# -----------------------------------------------------------
# ints
ints = Series([1, 2, 3])
result = ints.reindex([1, 2, 3])
expected = Series([2., 3., np.nan], index=[1, 2, 3])
assert_series_equal(result, expected)
# don't upcast
result = ints.reindex([1, 2, 3], fill_value=0)
expected = Series([2, 3, 0], index=[1, 2, 3])
assert issubclass(result.dtype.type, np.integer)
assert_series_equal(result, expected)
# -----------------------------------------------------------
# objects
objects = Series([1, 2, 3], dtype=object)
result = objects.reindex([1, 2, 3])
expected = Series([2, 3, np.nan], index=[1, 2, 3], dtype=object)
assert_series_equal(result, expected)
result = objects.reindex([1, 2, 3], fill_value='foo')
expected = Series([2, 3, 'foo'], index=[1, 2, 3], dtype=object)
assert_series_equal(result, expected)
# ------------------------------------------------------------
# bools
bools = Series([True, False, True])
result = bools.reindex([1, 2, 3])
expected = Series([False, True, np.nan], index=[1, 2, 3], dtype=object)
assert_series_equal(result, expected)
result = bools.reindex([1, 2, 3], fill_value=False)
expected = Series([False, True, False], index=[1, 2, 3])
assert_series_equal(result, expected)
def test_reindex_datetimeindexes_tz_naive_and_aware():
# GH 8306
idx = date_range('20131101', tz='America/Chicago', periods=7)
newidx = date_range('20131103', periods=10, freq='H')
s = Series(range(7), index=idx)
with pytest.raises(TypeError):
s.reindex(newidx, method='ffill')
def test_reindex_empty_series_tz_dtype():
# GH 20869
result = Series(dtype='datetime64[ns, UTC]').reindex([0, 1])
expected = Series([pd.NaT] * 2, dtype='datetime64[ns, UTC]')
tm.assert_equal(result, expected)
def test_rename():
# GH 17407
s = Series(range(1, 6), index=pd.Index(range(2, 7), name='IntIndex'))
result = s.rename(str)
expected = s.rename(lambda i: str(i))
assert_series_equal(result, expected)
assert result.name == expected.name
@pytest.mark.parametrize(
'data, index, drop_labels,'
' axis, expected_data, expected_index',
[
# Unique Index
([1, 2], ['one', 'two'], ['two'],
0, [1], ['one']),
([1, 2], ['one', 'two'], ['two'],
'rows', [1], ['one']),
([1, 1, 2], ['one', 'two', 'one'], ['two'],
0, [1, 2], ['one', 'one']),
# GH 5248 Non-Unique Index
([1, 1, 2], ['one', 'two', 'one'], 'two',
0, [1, 2], ['one', 'one']),
([1, 1, 2], ['one', 'two', 'one'], ['one'],
0, [1], ['two']),
([1, 1, 2], ['one', 'two', 'one'], 'one',
0, [1], ['two'])])
def test_drop_unique_and_non_unique_index(data, index, axis, drop_labels,
expected_data, expected_index):
s = Series(data=data, index=index)
result = s.drop(drop_labels, axis=axis)
expected = Series(data=expected_data, index=expected_index)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
'data, index, drop_labels,'
' axis, error_type, error_desc',
[
# single string/tuple-like
(range(3), list('abc'), 'bc',
0, KeyError, 'not found in axis'),
# bad axis
(range(3), list('abc'), ('a',),
0, KeyError, 'not found in axis'),
(range(3), list('abc'), 'one',
'columns', ValueError, 'No axis named columns')])
def test_drop_exception_raised(data, index, drop_labels,
axis, error_type, error_desc):
with pytest.raises(error_type, match=error_desc):
Series(data, index=index).drop(drop_labels, axis=axis)
def test_drop_with_ignore_errors():
# errors='ignore'
s = Series(range(3), index=list('abc'))
result = s.drop('bc', errors='ignore')
tm.assert_series_equal(result, s)
result = s.drop(['a', 'd'], errors='ignore')
expected = s.iloc[1:]
tm.assert_series_equal(result, expected)
# GH 8522
s = Series([2, 3], index=[True, False])
assert s.index.is_object()
result = s.drop(True)
expected = Series([3], index=[False])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize('index', [[1, 2, 3], [1, 1, 3]])
@pytest.mark.parametrize('drop_labels', [[], [1], [3]])
def test_drop_empty_list(index, drop_labels):
# GH 21494
expected_index = [i for i in index if i not in drop_labels]
series = pd.Series(index=index).drop(drop_labels)
tm.assert_series_equal(series, pd.Series(index=expected_index))
@pytest.mark.parametrize('data, index, drop_labels', [
(None, [1, 2, 3], [1, 4]),
(None, [1, 2, 2], [1, 4]),
([2, 3], [0, 1], [False, True])
])
def test_drop_non_empty_list(data, index, drop_labels):
# GH 21494 and GH 16877
with pytest.raises(KeyError, match='not found in axis'):
pd.Series(data=data, index=index).drop(drop_labels)