Skip to content

Commit 2e63f5b

Browse files
committed
BUG: fix DataFrame.__getitem__ and .loc with non-list listlikes
close pandas-dev#21294 close pandas-dev#21428
1 parent 2b13605 commit 2e63f5b

File tree

3 files changed

+90
-75
lines changed

3 files changed

+90
-75
lines changed

doc/source/whatsnew/v0.24.0.txt

+2
Original file line numberDiff line numberDiff line change
@@ -310,6 +310,8 @@ Indexing
310310
- When ``.ix`` is asked for a missing integer label in a :class:`MultiIndex` with a first level of integer type, it now raises a ``KeyError``, consistently with the case of a flat :class:`Int64Index, rather than falling back to positional indexing (:issue:`21593`)
311311
- Bug in :meth:`DatetimeIndex.reindex` when reindexing a tz-naive and tz-aware :class:`DatetimeIndex` (:issue:`8306`)
312312
- Bug in :class:`DataFrame` when setting values with ``.loc`` and a timezone aware :class:`DatetimeIndex` (:issue:`11365`)
313+
- ``DataFrame.__getitem__`` now accepts dictionaries and dictionary keys as list-likes of labels, consistently with ``Series.__getitem__`` (:issue:`21294`)
314+
- Fixed ``DataFrame[np.nan]`` when columns are non-unique (:issue:`21428`)
313315
- Bug when indexing :class:`DatetimeIndex` with nanosecond resolution dates and timezones (:issue:`11679`)
314316

315317
-

pandas/core/frame.py

+60-48
Original file line numberDiff line numberDiff line change
@@ -2670,68 +2670,80 @@ def _ixs(self, i, axis=0):
26702670
def __getitem__(self, key):
26712671
key = com._apply_if_callable(key, self)
26722672

2673-
# shortcut if we are an actual column
2674-
is_mi_columns = isinstance(self.columns, MultiIndex)
2673+
# shortcut if the key is in columns
26752674
try:
2676-
if key in self.columns and not is_mi_columns:
2677-
return self._getitem_column(key)
2678-
except:
2675+
if self.columns.is_unique and key in self.columns:
2676+
if self.columns.nlevels > 1:
2677+
return self._getitem_multilevel(key)
2678+
return self._get_item_cache(key)
2679+
except (TypeError, ValueError):
2680+
# The TypeError correctly catches non hashable "key" (e.g. list)
2681+
# The ValueError can be removed once GH #21729 is fixed
26792682
pass
26802683

2681-
# see if we can slice the rows
2684+
# Do we have a slicer (on rows)?
26822685
indexer = convert_to_index_sliceable(self, key)
26832686
if indexer is not None:
2684-
return self._getitem_slice(indexer)
2687+
return self._slice(indexer, axis=0)
26852688

2686-
if isinstance(key, (Series, np.ndarray, Index, list)):
2687-
# either boolean or fancy integer index
2688-
return self._getitem_array(key)
2689-
elif isinstance(key, DataFrame):
2689+
# Do we have a (boolean) DataFrame?
2690+
if isinstance(key, DataFrame):
26902691
return self._getitem_frame(key)
2691-
elif is_mi_columns:
2692-
return self._getitem_multilevel(key)
2692+
2693+
# Do we have a (boolean) 1d indexer?
2694+
if com.is_bool_indexer(key):
2695+
return self._getitem_bool_array(key)
2696+
2697+
# We are left with two options: a single key, and a collection of keys,
2698+
# We interpret tuples as collections only for non-MultiIndex
2699+
is_single_key = isinstance(key, tuple) or not is_list_like(key)
2700+
2701+
if is_single_key:
2702+
if self.columns.nlevels > 1:
2703+
return self._getitem_multilevel(key)
2704+
indexer = self.columns.get_loc(key)
2705+
if is_integer(indexer):
2706+
indexer = [indexer]
26932707
else:
2694-
return self._getitem_column(key)
2708+
if is_iterator(key):
2709+
key = list(key)
2710+
indexer = self.loc._convert_to_indexer(key, axis=1,
2711+
raise_missing=True)
26952712

2696-
def _getitem_column(self, key):
2697-
""" return the actual column """
2713+
# take() does not accept boolean indexers
2714+
if getattr(indexer, "dtype", None) == bool:
2715+
indexer = np.where(indexer)[0]
26982716

2699-
# get column
2700-
if self.columns.is_unique:
2701-
return self._get_item_cache(key)
2717+
data = self._take(indexer, axis=1)
27022718

2703-
# duplicate columns & possible reduce dimensionality
2704-
result = self._constructor(self._data.get(key))
2705-
if result.columns.is_unique:
2706-
result = result[key]
2719+
if is_single_key:
2720+
# What does looking for a single key in a non-unique index return?
2721+
# The behavior is inconsistent. It returns a Series, except when
2722+
# - the key itself is repeated (test on data.shape, #9519), or
2723+
# - we have a MultiIndex on columns (test on self.columns, #21309)
2724+
if data.shape[1] == 1 and not isinstance(self.columns, MultiIndex):
2725+
data = data[key]
27072726

2708-
return result
2709-
2710-
def _getitem_slice(self, key):
2711-
return self._slice(key, axis=0)
2727+
return data
27122728

2713-
def _getitem_array(self, key):
2729+
def _getitem_bool_array(self, key):
27142730
# also raises Exception if object array with NA values
2715-
if com.is_bool_indexer(key):
2716-
# warning here just in case -- previously __setitem__ was
2717-
# reindexing but __getitem__ was not; it seems more reasonable to
2718-
# go with the __setitem__ behavior since that is more consistent
2719-
# with all other indexing behavior
2720-
if isinstance(key, Series) and not key.index.equals(self.index):
2721-
warnings.warn("Boolean Series key will be reindexed to match "
2722-
"DataFrame index.", UserWarning, stacklevel=3)
2723-
elif len(key) != len(self.index):
2724-
raise ValueError('Item wrong length %d instead of %d.' %
2725-
(len(key), len(self.index)))
2726-
# check_bool_indexer will throw exception if Series key cannot
2727-
# be reindexed to match DataFrame rows
2728-
key = check_bool_indexer(self.index, key)
2729-
indexer = key.nonzero()[0]
2730-
return self._take(indexer, axis=0)
2731-
else:
2732-
indexer = self.loc._convert_to_indexer(key, axis=1,
2733-
raise_missing=True)
2734-
return self._take(indexer, axis=1)
2731+
# warning here just in case -- previously __setitem__ was
2732+
# reindexing but __getitem__ was not; it seems more reasonable to
2733+
# go with the __setitem__ behavior since that is more consistent
2734+
# with all other indexing behavior
2735+
if isinstance(key, Series) and not key.index.equals(self.index):
2736+
warnings.warn("Boolean Series key will be reindexed to match "
2737+
"DataFrame index.", UserWarning, stacklevel=3)
2738+
elif len(key) != len(self.index):
2739+
raise ValueError('Item wrong length %d instead of %d.' %
2740+
(len(key), len(self.index)))
2741+
2742+
# check_bool_indexer will throw exception if Series key cannot
2743+
# be reindexed to match DataFrame rows
2744+
key = check_bool_indexer(self.index, key)
2745+
indexer = key.nonzero()[0]
2746+
return self._take(indexer, axis=0)
27352747

27362748
def _getitem_multilevel(self, key):
27372749
loc = self.columns.get_loc(key)

pandas/tests/frame/test_indexing.py

+28-27
Original file line numberDiff line numberDiff line change
@@ -92,45 +92,46 @@ def test_get(self):
9292
result = df.get(None)
9393
assert result is None
9494

95-
def test_getitem_iterator(self):
95+
def test_loc_iterable(self):
9696
idx = iter(['A', 'B', 'C'])
9797
result = self.frame.loc[:, idx]
9898
expected = self.frame.loc[:, ['A', 'B', 'C']]
9999
assert_frame_equal(result, expected)
100100

101-
idx = iter(['A', 'B', 'C'])
102-
result = self.frame.loc[:, idx]
103-
expected = self.frame.loc[:, ['A', 'B', 'C']]
104-
assert_frame_equal(result, expected)
101+
@pytest.mark.parametrize(
102+
"idx_type",
103+
[list, iter, Index, set,
104+
lambda l: dict(zip(l, range(len(l)))),
105+
lambda l: dict(zip(l, range(len(l)))).keys()],
106+
ids=["list", "iter", "Index", "set", "dict", "dict_keys"])
107+
@pytest.mark.parametrize("levels", [1, 2])
108+
def test_getitem_listlike(self, idx_type, levels):
109+
# GH 21294
110+
111+
if levels == 1:
112+
frame, missing = self.frame, 'food'
113+
else:
114+
# MultiIndex columns
115+
frame = DataFrame(randn(8, 3),
116+
columns=Index([('foo', 'bar'), ('baz', 'qux'),
117+
('peek', 'aboo')],
118+
name=('sth', 'sth2')))
119+
missing = ('good', 'food')
105120

106-
def test_getitem_list(self):
107-
self.frame.columns.name = 'foo'
121+
keys = [frame.columns[1], frame.columns[0]]
122+
idx = idx_type(keys)
123+
idx_check = list(idx_type(keys))
108124

109-
result = self.frame[['B', 'A']]
110-
result2 = self.frame[Index(['B', 'A'])]
125+
result = frame[idx]
111126

112-
expected = self.frame.loc[:, ['B', 'A']]
113-
expected.columns.name = 'foo'
127+
expected = frame.loc[:, idx_check]
128+
expected.columns.names = frame.columns.names
114129

115130
assert_frame_equal(result, expected)
116-
assert_frame_equal(result2, expected)
117131

118-
assert result.columns.name == 'foo'
119-
120-
with tm.assert_raises_regex(KeyError, 'not in index'):
121-
self.frame[['B', 'A', 'food']]
132+
idx = idx_type(keys + [missing])
122133
with tm.assert_raises_regex(KeyError, 'not in index'):
123-
self.frame[Index(['B', 'A', 'foo'])]
124-
125-
# tuples
126-
df = DataFrame(randn(8, 3),
127-
columns=Index([('foo', 'bar'), ('baz', 'qux'),
128-
('peek', 'aboo')], name=('sth', 'sth2')))
129-
130-
result = df[[('foo', 'bar'), ('baz', 'qux')]]
131-
expected = df.iloc[:, :2]
132-
assert_frame_equal(result, expected)
133-
assert result.columns.names == ('sth', 'sth2')
134+
frame[idx]
134135

135136
def test_getitem_callable(self):
136137
# GH 12533

0 commit comments

Comments
 (0)