@@ -322,7 +322,7 @@ class DataFrame(NDFrame):
322
322
RangeIndex (0, 1, 2, ..., n) if no column labels are provided
323
323
dtype : dtype, default None
324
324
Data type to force. Only a single dtype is allowed. If None, infer
325
- copy : boolean , default False
325
+ copy : bool , default False
326
326
Copy data from inputs. Only affects DataFrame / 2d ndarray input
327
327
328
328
See Also
@@ -1553,7 +1553,7 @@ def from_records(
1553
1553
columns. Otherwise this argument indicates the order of the columns
1554
1554
in the result (any names not found in the data will become all-NA
1555
1555
columns)
1556
- coerce_float : boolean , default False
1556
+ coerce_float : bool , default False
1557
1557
Attempt to convert values of non-string, non-numeric objects (like
1558
1558
decimal.Decimal) to floating point, useful for SQL result sets
1559
1559
nrows : int, default None
@@ -4775,7 +4775,7 @@ def drop_duplicates(self, subset=None, keep="first", inplace=False):
4775
4775
- ``first`` : Drop duplicates except for the first occurrence.
4776
4776
- ``last`` : Drop duplicates except for the last occurrence.
4777
4777
- False : Drop all duplicates.
4778
- inplace : boolean , default False
4778
+ inplace : bool , default False
4779
4779
Whether to drop duplicates in place or to return a copy
4780
4780
4781
4781
Returns
@@ -5850,14 +5850,14 @@ def pivot(self, index=None, columns=None, values=None):
5850
5850
is function or list of functions
5851
5851
fill_value : scalar, default None
5852
5852
Value to replace missing values with
5853
- margins : boolean , default False
5853
+ margins : bool , default False
5854
5854
Add all row / columns (e.g. for subtotal / grand totals)
5855
- dropna : boolean , default True
5855
+ dropna : bool , default True
5856
5856
Do not include columns whose entries are all NaN
5857
5857
margins_name : string, default 'All'
5858
5858
Name of the row / column that will contain the totals
5859
5859
when margins is True.
5860
- observed : boolean , default False
5860
+ observed : bool , default False
5861
5861
This only applies if any of the groupers are Categoricals.
5862
5862
If True: only show observed values for categorical groupers.
5863
5863
If False: show all values for categorical groupers.
@@ -6894,11 +6894,11 @@ def append(self, other, ignore_index=False, verify_integrity=False, sort=None):
6894
6894
----------
6895
6895
other : DataFrame or Series/dict-like object, or list of these
6896
6896
The data to append.
6897
- ignore_index : boolean , default False
6897
+ ignore_index : bool , default False
6898
6898
If True, do not use the index labels.
6899
- verify_integrity : boolean , default False
6899
+ verify_integrity : bool , default False
6900
6900
If True, raise ValueError on creating index with duplicates.
6901
- sort : boolean , default None
6901
+ sort : bool , default None
6902
6902
Sort columns if the columns of `self` and `other` are not aligned.
6903
6903
The default sorting is deprecated and will change to not-sorting
6904
6904
in a future version of pandas. Explicitly pass ``sort=True`` to
@@ -7940,7 +7940,7 @@ def idxmin(self, axis=0, skipna=True):
7940
7940
----------
7941
7941
axis : {0 or 'index', 1 or 'columns'}, default 0
7942
7942
0 or 'index' for row-wise, 1 or 'columns' for column-wise
7943
- skipna : boolean , default True
7943
+ skipna : bool , default True
7944
7944
Exclude NA/null values. If an entire row/column is NA, the result
7945
7945
will be NA.
7946
7946
@@ -7977,7 +7977,7 @@ def idxmax(self, axis=0, skipna=True):
7977
7977
----------
7978
7978
axis : {0 or 'index', 1 or 'columns'}, default 0
7979
7979
0 or 'index' for row-wise, 1 or 'columns' for column-wise
7980
- skipna : boolean , default True
7980
+ skipna : bool , default True
7981
7981
Exclude NA/null values. If an entire row/column is NA, the result
7982
7982
will be NA.
7983
7983
0 commit comments