@@ -139,7 +139,7 @@ def last_col2front(df, col_no=1):
139
139
140
140
141
141
def extended_info (df , time_cols = True , aggreg = True , aggreg_func = None ,
142
- datetime_index = False ):
142
+ ):
143
143
"""add extended information to a timeseries pivot
144
144
"""
145
145
@@ -156,18 +156,19 @@ def extended_info(df, time_cols=True, aggreg=True, aggreg_func=None,
156
156
df_extended ['sum' ] = df_extended [cols ].sum (1 )
157
157
df_extended ['min' ] = df_extended [cols ].min (1 )
158
158
df_extended ['max' ] = df_extended [cols ].max (1 )
159
- df_extended ['max' ] = df_extended [cols ].std (1 )
159
+ df_extended ['std' ] = df_extended [cols ].std (1 )
160
+ #TODO: how to add more functions in flexible way? check other pandas functions
161
+ if aggreg_func :
162
+ df_extended ['aggregated' ] = df_extended [cols ].aggreg_func (1 )
160
163
161
164
#add some metadata
162
165
#TODO: add function to make index a datetime with the argument above using the rng below
163
166
#TODO: convert the range to lower frequencies and reuse the function.
164
167
rng = default_rng ()
165
168
df_extended ['doy' ] = rng .dayofyear
166
- # df_extended = last_col2front(df_extended)
167
169
df_extended ['month' ] = rng .month
168
- # df_extended = last_col2front(df_extended)
169
170
df_extended ['day' ] = rng .day
170
- # df_extended = last_col2front(df_extended)
171
+ #add 1 to have hours formatted in "natural" and not programming counting
171
172
df_extended ['hour' ] = rng .hour + 1
172
173
df_extended = last_col2front (df_extended , col_no = 4 )
173
174
0 commit comments