forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_feather.py
188 lines (150 loc) · 6.06 KB
/
test_feather.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
""" test feather-format compat """
from distutils.version import LooseVersion
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
from pandas.io.feather_format import read_feather, to_feather # noqa: E402 isort:skip
pyarrow = pytest.importorskip("pyarrow")
pyarrow_version = LooseVersion(pyarrow.__version__)
filter_sparse = pytest.mark.filterwarnings("ignore:The Sparse")
@filter_sparse
@pytest.mark.single
class TestFeather:
def check_error_on_write(self, df, exc):
# check that we are raising the exception
# on writing
with pytest.raises(exc):
with tm.ensure_clean() as path:
to_feather(df, path)
def check_round_trip(self, df, expected=None, write_kwargs={}, **read_kwargs):
if expected is None:
expected = df
with tm.ensure_clean() as path:
to_feather(df, path, **write_kwargs)
result = read_feather(path, **read_kwargs)
tm.assert_frame_equal(result, expected)
def test_error(self):
for obj in [
pd.Series([1, 2, 3]),
1,
"foo",
pd.Timestamp("20130101"),
np.array([1, 2, 3]),
]:
self.check_error_on_write(obj, ValueError)
def test_basic(self):
df = pd.DataFrame(
{
"string": list("abc"),
"int": list(range(1, 4)),
"uint": np.arange(3, 6).astype("u1"),
"float": np.arange(4.0, 7.0, dtype="float64"),
"float_with_null": [1.0, np.nan, 3],
"bool": [True, False, True],
"bool_with_null": [True, np.nan, False],
"cat": pd.Categorical(list("abc")),
"dt": pd.DatetimeIndex(
list(pd.date_range("20130101", periods=3)), freq=None
),
"dttz": pd.DatetimeIndex(
list(pd.date_range("20130101", periods=3, tz="US/Eastern")),
freq=None,
),
"dt_with_null": [
pd.Timestamp("20130101"),
pd.NaT,
pd.Timestamp("20130103"),
],
"dtns": pd.DatetimeIndex(
list(pd.date_range("20130101", periods=3, freq="ns")), freq=None
),
}
)
if pyarrow_version >= LooseVersion("0.16.1.dev"):
df["periods"] = pd.period_range("2013", freq="M", periods=3)
df["timedeltas"] = pd.timedelta_range("1 day", periods=3)
# TODO temporary disable due to regression in pyarrow 0.17.1
# https://github.com/pandas-dev/pandas/issues/34255
# df["intervals"] = pd.interval_range(0, 3, 3)
assert df.dttz.dtype.tz.zone == "US/Eastern"
self.check_round_trip(df)
def test_duplicate_columns(self):
# https://github.com/wesm/feather/issues/53
# not currently able to handle duplicate columns
df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy()
self.check_error_on_write(df, ValueError)
def test_stringify_columns(self):
df = pd.DataFrame(np.arange(12).reshape(4, 3)).copy()
self.check_error_on_write(df, ValueError)
def test_read_columns(self):
# GH 24025
df = pd.DataFrame(
{
"col1": list("abc"),
"col2": list(range(1, 4)),
"col3": list("xyz"),
"col4": list(range(4, 7)),
}
)
columns = ["col1", "col3"]
self.check_round_trip(df, expected=df[columns], columns=columns)
@td.skip_if_no("pyarrow", min_version="0.17.1")
def read_columns_different_order(self):
# GH 33878
df = pd.DataFrame({"A": [1, 2], "B": ["x", "y"], "C": [True, False]})
self.check_round_trip(df, columns=["B", "A"])
def test_unsupported_other(self):
# mixed python objects
df = pd.DataFrame({"a": ["a", 1, 2.0]})
# Some versions raise ValueError, others raise ArrowInvalid.
self.check_error_on_write(df, Exception)
def test_rw_use_threads(self):
df = pd.DataFrame({"A": np.arange(100000)})
self.check_round_trip(df, use_threads=True)
self.check_round_trip(df, use_threads=False)
def test_write_with_index(self):
df = pd.DataFrame({"A": [1, 2, 3]})
self.check_round_trip(df)
# non-default index
for index in [
[2, 3, 4],
pd.date_range("20130101", periods=3),
list("abc"),
[1, 3, 4],
pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)]),
]:
df.index = index
self.check_error_on_write(df, ValueError)
# index with meta-data
df.index = [0, 1, 2]
df.index.name = "foo"
self.check_error_on_write(df, ValueError)
# column multi-index
df.index = [0, 1, 2]
df.columns = pd.MultiIndex.from_tuples([("a", 1)])
self.check_error_on_write(df, ValueError)
def test_path_pathlib(self):
df = tm.makeDataFrame().reset_index()
result = tm.round_trip_pathlib(df.to_feather, pd.read_feather)
tm.assert_frame_equal(df, result)
def test_path_localpath(self):
df = tm.makeDataFrame().reset_index()
result = tm.round_trip_localpath(df.to_feather, pd.read_feather)
tm.assert_frame_equal(df, result)
@td.skip_if_no("pyarrow", min_version="0.16.1.dev")
def test_passthrough_keywords(self):
df = tm.makeDataFrame().reset_index()
self.check_round_trip(df, write_kwargs=dict(version=1))
@td.skip_if_no("pyarrow")
@tm.network
def test_http_path(self, feather_file):
# GH 29055
url = (
"https://raw.githubusercontent.com/pandas-dev/pandas/master/"
"pandas/tests/io/data/feather/feather-0_3_1.feather"
)
expected = pd.read_feather(feather_file)
res = pd.read_feather(url)
tm.assert_frame_equal(expected, res)