Skip to content

Commit d795321

Browse files
committed
Implement tan
Also includes implementing the private k_tan function. Closes rust-lang#36
1 parent 4c0992b commit d795321

File tree

5 files changed

+179
-3
lines changed

5 files changed

+179
-3
lines changed

src/lib.rs

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -390,7 +390,6 @@ pub trait F64Ext: private::Sealed {
390390

391391
fn cos(self) -> Self;
392392

393-
#[cfg(todo)]
394393
fn tan(self) -> Self;
395394

396395
#[cfg(todo)]
@@ -556,7 +555,6 @@ impl F64Ext for f64 {
556555
cos(self)
557556
}
558557

559-
#[cfg(todo)]
560558
#[inline]
561559
fn tan(self) -> Self {
562560
tan(self)

src/math/k_tan.rs

Lines changed: 105 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,105 @@
1+
// origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
2+
//
3+
// ====================================================
4+
// Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
5+
//
6+
// Permission to use, copy, modify, and distribute this
7+
// software is freely granted, provided that this notice
8+
// is preserved.
9+
// ====================================================
10+
11+
// kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
12+
// Input x is assumed to be bounded by ~pi/4 in magnitude.
13+
// Input y is the tail of x.
14+
// Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
15+
//
16+
// Algorithm
17+
// 1. Since tan(-x) = -tan(x), we need only to consider positive x.
18+
// 2. Callers must return tan(-0) = -0 without calling here since our
19+
// odd polynomial is not evaluated in a way that preserves -0.
20+
// Callers may do the optimization tan(x) ~ x for tiny x.
21+
// 3. tan(x) is approximated by a odd polynomial of degree 27 on
22+
// [0,0.67434]
23+
// 3 27
24+
// tan(x) ~ x + T1*x + ... + T13*x
25+
// where
26+
//
27+
// |tan(x) 2 4 26 | -59.2
28+
// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
29+
// | x |
30+
//
31+
// Note: tan(x+y) = tan(x) + tan'(x)*y
32+
// ~ tan(x) + (1+x*x)*y
33+
// Therefore, for better accuracy in computing tan(x+y), let
34+
// 3 2 2 2 2
35+
// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
36+
// then
37+
// 3 2
38+
// tan(x+y) = x + (T1*x + (x *(r+y)+y))
39+
//
40+
// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
41+
// tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
42+
// = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
43+
static T: [f64; 13] = [
44+
3.33333333333334091986e-01, /* 3FD55555, 55555563 */
45+
1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
46+
5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
47+
2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
48+
8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
49+
3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
50+
1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
51+
5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
52+
2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
53+
7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
54+
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
55+
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
56+
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
57+
];
58+
const PIO4: f64 = 7.85398163397448278999e-01; /* 3FE921FB, 54442D18 */
59+
const PIO4_LO: f64 = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
60+
61+
pub(crate) fn k_tan(mut x: f64, mut y: f64, odd: i32) -> f64 {
62+
let hx = (f64::to_bits(x) >> 32) as u32;
63+
let big = (hx & 0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
64+
if big {
65+
let sign = hx >> 31;
66+
if sign != 0 {
67+
x = -x;
68+
y = -y;
69+
}
70+
x = (PIO4 - x) + (PIO4_LO - y);
71+
y = 0.0;
72+
}
73+
let z = x * x;
74+
let w = z * z;
75+
/*
76+
* Break x^5*(T[1]+x^2*T[2]+...) into
77+
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
78+
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
79+
*/
80+
let r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11]))));
81+
let v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12])))));
82+
let s = z * x;
83+
let r = y + z * (s * (r + v) + y) + s * T[0];
84+
let w = x + r;
85+
if big {
86+
let sign = hx >> 31;
87+
let s = 1.0 - 2.0 * odd as f64;
88+
let v = s - 2.0 * (x + (r - w * w / (w + s)));
89+
return if sign != 0 { -v } else { v };
90+
}
91+
if odd == 0 {
92+
return w;
93+
}
94+
/* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
95+
let w0 = zero_low_word(w);
96+
let v = r - (w0 - x); /* w0+v = r+x */
97+
let a = -1.0 / w;
98+
let a0 = zero_low_word(a);
99+
a0 + a * (1.0 + a0 * w0 + a0 * v)
100+
}
101+
102+
#[inline]
103+
fn zero_low_word(x: f64) -> f64 {
104+
f64::from_bits(f64::to_bits(x) & 0xFFFF_FFFF_0000_0000)
105+
}

src/math/mod.rs

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -52,6 +52,7 @@ mod sin;
5252
mod sinf;
5353
mod sqrt;
5454
mod sqrtf;
55+
mod tan;
5556
mod tanf;
5657
mod trunc;
5758
mod truncf;
@@ -102,6 +103,7 @@ pub use self::sin::sin;
102103
pub use self::sinf::sinf;
103104
pub use self::sqrt::sqrt;
104105
pub use self::sqrtf::sqrtf;
106+
pub use self::tan::tan;
105107
pub use self::tanf::tanf;
106108
pub use self::trunc::trunc;
107109
pub use self::truncf::truncf;
@@ -111,6 +113,7 @@ mod k_cos;
111113
mod k_cosf;
112114
mod k_sin;
113115
mod k_sinf;
116+
mod k_tan;
114117
mod k_tanf;
115118
mod rem_pio2;
116119
mod rem_pio2_large;
@@ -121,6 +124,7 @@ use self::k_cos::k_cos;
121124
use self::k_cosf::k_cosf;
122125
use self::k_sin::k_sin;
123126
use self::k_sinf::k_sinf;
127+
use self::k_tan::k_tan;
124128
use self::k_tanf::k_tanf;
125129
use self::rem_pio2::rem_pio2;
126130
use self::rem_pio2_large::rem_pio2_large;

src/math/tan.rs

Lines changed: 69 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,69 @@
1+
// origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */
2+
//
3+
// ====================================================
4+
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5+
//
6+
// Developed at SunPro, a Sun Microsystems, Inc. business.
7+
// Permission to use, copy, modify, and distribute this
8+
// software is freely granted, provided that this notice
9+
// is preserved.
10+
// ====================================================
11+
12+
use super::{k_tan, rem_pio2};
13+
14+
// tan(x)
15+
// Return tangent function of x.
16+
//
17+
// kernel function:
18+
// k_tan ... tangent function on [-pi/4,pi/4]
19+
// rem_pio2 ... argument reduction routine
20+
//
21+
// Method.
22+
// Let S,C and T denote the sin, cos and tan respectively on
23+
// [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
24+
// in [-pi/4 , +pi/4], and let n = k mod 4.
25+
// We have
26+
//
27+
// n sin(x) cos(x) tan(x)
28+
// ----------------------------------------------------------
29+
// 0 S C T
30+
// 1 C -S -1/T
31+
// 2 -S -C T
32+
// 3 -C S -1/T
33+
// ----------------------------------------------------------
34+
//
35+
// Special cases:
36+
// Let trig be any of sin, cos, or tan.
37+
// trig(+-INF) is NaN, with signals;
38+
// trig(NaN) is that NaN;
39+
//
40+
// Accuracy:
41+
// TRIG(x) returns trig(x) nearly rounded
42+
pub fn tan(x: f64) -> f64 {
43+
let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
44+
45+
let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff;
46+
/* |x| ~< pi/4 */
47+
if ix <= 0x3fe921fb {
48+
if ix < 0x3e400000 {
49+
/* |x| < 2**-27 */
50+
/* raise inexact if x!=0 and underflow if subnormal */
51+
force_eval!(if ix < 0x00100000 {
52+
x / x1p120 as f64
53+
} else {
54+
x + x1p120 as f64
55+
});
56+
return x;
57+
}
58+
return k_tan(x, 0.0, 0);
59+
}
60+
61+
/* tan(Inf or NaN) is NaN */
62+
if ix >= 0x7ff00000 {
63+
return x - x;
64+
}
65+
66+
/* argument reduction */
67+
let (n, y0, y1) = rem_pio2(x);
68+
k_tan(y0, y1, n & 1)
69+
}

test-generator/src/main.rs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -716,7 +716,7 @@ f64_f64! {
716716
sin,
717717
// sinh,
718718
sqrt,
719-
// tan,
719+
tan,
720720
// tanh,
721721
trunc,
722722
fabs,

0 commit comments

Comments
 (0)