|
| 1 | +/* atan(x) |
| 2 | + * Method |
| 3 | + * 1. Reduce x to positive by atan(x) = -atan(-x). |
| 4 | + * 2. According to the integer k=4t+0.25 chopped, t=x, the argument |
| 5 | + * is further reduced to one of the following intervals and the |
| 6 | + * arctangent of t is evaluated by the corresponding formula: |
| 7 | + * |
| 8 | + * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) |
| 9 | + * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) |
| 10 | + * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) |
| 11 | + * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) |
| 12 | + * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) |
| 13 | + * |
| 14 | + * Constants: |
| 15 | + * The hexadecimal values are the intended ones for the following |
| 16 | + * constants. The decimal values may be used, provided that the |
| 17 | + * compiler will convert from decimal to binary accurately enough |
| 18 | + * to produce the hexadecimal values shown. |
| 19 | + */ |
| 20 | + |
| 21 | +use super::fabs; |
| 22 | +use core::f64; |
| 23 | + |
| 24 | +const ATANHI: [f64; 4] = [ |
| 25 | + 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ |
| 26 | + 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ |
| 27 | + 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ |
| 28 | + 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ |
| 29 | +]; |
| 30 | + |
| 31 | +const ATANLO: [f64; 4] = [ |
| 32 | + 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ |
| 33 | + 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ |
| 34 | + 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ |
| 35 | + 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ |
| 36 | +]; |
| 37 | + |
| 38 | +const AT: [f64; 11] = [ |
| 39 | + 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ |
| 40 | + -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ |
| 41 | + 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ |
| 42 | + -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ |
| 43 | + 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ |
| 44 | + -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ |
| 45 | + 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ |
| 46 | + -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ |
| 47 | + 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ |
| 48 | + -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ |
| 49 | + 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ |
| 50 | +]; |
| 51 | + |
| 52 | +#[inline] |
| 53 | +pub fn atan(x: f64) -> f64 { |
| 54 | + let mut x = x; |
| 55 | + let mut ix = (x.to_bits() >> 32) as u32; |
| 56 | + let sign = ix >> 31; |
| 57 | + ix &= 0x7fff_ffff; |
| 58 | + if ix >= 0x4410_0000 { |
| 59 | + if x.is_nan() { |
| 60 | + return x; |
| 61 | + } |
| 62 | + |
| 63 | + let z = ATANHI[3] + f64::from_bits(0x0380_0000); // 0x1p-120f |
| 64 | + return if sign != 0 { -z } else { z }; |
| 65 | + } |
| 66 | + |
| 67 | + let id = if ix < 0x3fdc_0000 { |
| 68 | + /* |x| < 0.4375 */ |
| 69 | + if ix < 0x3e40_0000 { |
| 70 | + /* |x| < 2^-27 */ |
| 71 | + if ix < 0x0010_0000 { |
| 72 | + /* raise underflow for subnormal x */ |
| 73 | + force_eval!(x as f32); |
| 74 | + } |
| 75 | + |
| 76 | + return x; |
| 77 | + } |
| 78 | + |
| 79 | + -1 |
| 80 | + } else { |
| 81 | + x = fabs(x); |
| 82 | + if ix < 0x3ff30000 { |
| 83 | + /* |x| < 1.1875 */ |
| 84 | + if ix < 0x3fe60000 { |
| 85 | + /* 7/16 <= |x| < 11/16 */ |
| 86 | + x = (2. * x - 1.) / (2. + x); |
| 87 | + 0 |
| 88 | + } else { |
| 89 | + /* 11/16 <= |x| < 19/16 */ |
| 90 | + x = (x - 1.) / (x + 1.); |
| 91 | + 1 |
| 92 | + } |
| 93 | + } else { |
| 94 | + if ix < 0x40038000 { |
| 95 | + /* |x| < 2.4375 */ |
| 96 | + x = (x - 1.5) / (1. + 1.5 * x); |
| 97 | + 2 |
| 98 | + } else { |
| 99 | + /* 2.4375 <= |x| < 2^66 */ |
| 100 | + x = -1. / x; |
| 101 | + 3 |
| 102 | + } |
| 103 | + } |
| 104 | + }; |
| 105 | + |
| 106 | + let z = x * x; |
| 107 | + let w = z * z; |
| 108 | + /* break sum from i=0 to 10 AT[i]z**(i+1) into odd and even poly */ |
| 109 | + let s1 = z * (AT[0] + w * (AT[2] + w * (AT[4] + w * (AT[6] + w * (AT[8] + w * AT[10]))))); |
| 110 | + let s2 = w * (AT[1] + w * (AT[3] + w * (AT[5] + w * (AT[7] + w * AT[9])))); |
| 111 | + |
| 112 | + if id < 0 { |
| 113 | + return x - x * (s1 + s2); |
| 114 | + } |
| 115 | + |
| 116 | + let z = ATANHI[id as usize] - (x * (s1 + s2) - ATANLO[id as usize] - x); |
| 117 | + |
| 118 | + if sign != 0 { |
| 119 | + -z |
| 120 | + } else { |
| 121 | + z |
| 122 | + } |
| 123 | +} |
| 124 | + |
| 125 | +#[cfg(test)] |
| 126 | +mod tests { |
| 127 | + use super::atan; |
| 128 | + use core::f64; |
| 129 | + |
| 130 | + #[test] |
| 131 | + fn sanity_check() { |
| 132 | + for (input, answer) in [ |
| 133 | + (3.0_f64.sqrt() / 3.0, f64::consts::FRAC_PI_6), |
| 134 | + (1.0, f64::consts::FRAC_PI_4), |
| 135 | + (3.0_f64.sqrt(), f64::consts::FRAC_PI_3), |
| 136 | + (-3.0_f64.sqrt() / 3.0, -f64::consts::FRAC_PI_6), |
| 137 | + (-1.0, -f64::consts::FRAC_PI_4), |
| 138 | + (-3.0_f64.sqrt(), -f64::consts::FRAC_PI_3), |
| 139 | + ].iter() |
| 140 | + { |
| 141 | + assert!( |
| 142 | + (atan(*input) - answer) / answer < 1e-5, |
| 143 | + "\natan({:.4}/16) = {:.4}, actual: {}", |
| 144 | + input * 16.0, |
| 145 | + answer, |
| 146 | + atan(*input) |
| 147 | + ); |
| 148 | + } |
| 149 | + } |
| 150 | + |
| 151 | + #[test] |
| 152 | + fn zero() { |
| 153 | + assert_eq!(atan(0.0), 0.0); |
| 154 | + } |
| 155 | + |
| 156 | + #[test] |
| 157 | + fn infinity() { |
| 158 | + assert_eq!(atan(f64::INFINITY), f64::consts::FRAC_PI_2); |
| 159 | + } |
| 160 | + |
| 161 | + #[test] |
| 162 | + fn minus_infinity() { |
| 163 | + assert_eq!(atan(f64::NEG_INFINITY), -f64::consts::FRAC_PI_2); |
| 164 | + } |
| 165 | + |
| 166 | + #[test] |
| 167 | + fn nan() { |
| 168 | + assert!(atan(f64::NAN).is_nan()); |
| 169 | + } |
| 170 | +} |
0 commit comments