Skip to content

Commit 31ab742

Browse files
87: implement log1p and log1pf r=japaric a=erikdesjardins closes rust-lang#26, closes rust-lang#49 Co-authored-by: Erik <[email protected]>
2 parents f6b3ecc + c8937b7 commit 31ab742

File tree

5 files changed

+246
-8
lines changed

5 files changed

+246
-8
lines changed

src/lib.rs

-4
Original file line numberDiff line numberDiff line change
@@ -114,7 +114,6 @@ pub trait F32Ext: private::Sealed {
114114
#[cfg(todo)]
115115
fn exp_m1(self) -> Self;
116116

117-
#[cfg(todo)]
118117
fn ln_1p(self) -> Self;
119118

120119
#[cfg(todo)]
@@ -295,7 +294,6 @@ impl F32Ext for f32 {
295294
expm1f(self)
296295
}
297296

298-
#[cfg(todo)]
299297
#[inline]
300298
fn ln_1p(self) -> Self {
301299
log1pf(self)
@@ -432,7 +430,6 @@ pub trait F64Ext: private::Sealed {
432430
#[cfg(todo)]
433431
fn exp_m1(self) -> Self;
434432

435-
#[cfg(todo)]
436433
fn ln_1p(self) -> Self;
437434

438435
#[cfg(todo)]
@@ -616,7 +613,6 @@ impl F64Ext for f64 {
616613
expm1(self)
617614
}
618615

619-
#[cfg(todo)]
620616
#[inline]
621617
fn ln_1p(self) -> Self {
622618
log1p(self)

src/math/log1p.rs

+142
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,142 @@
1+
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
2+
/*
3+
* ====================================================
4+
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5+
*
6+
* Developed at SunPro, a Sun Microsystems, Inc. business.
7+
* Permission to use, copy, modify, and distribute this
8+
* software is freely granted, provided that this notice
9+
* is preserved.
10+
* ====================================================
11+
*/
12+
/* double log1p(double x)
13+
* Return the natural logarithm of 1+x.
14+
*
15+
* Method :
16+
* 1. Argument Reduction: find k and f such that
17+
* 1+x = 2^k * (1+f),
18+
* where sqrt(2)/2 < 1+f < sqrt(2) .
19+
*
20+
* Note. If k=0, then f=x is exact. However, if k!=0, then f
21+
* may not be representable exactly. In that case, a correction
22+
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
23+
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
24+
* and add back the correction term c/u.
25+
* (Note: when x > 2**53, one can simply return log(x))
26+
*
27+
* 2. Approximation of log(1+f): See log.c
28+
*
29+
* 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
30+
*
31+
* Special cases:
32+
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
33+
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
34+
* log1p(NaN) is that NaN with no signal.
35+
*
36+
* Accuracy:
37+
* according to an error analysis, the error is always less than
38+
* 1 ulp (unit in the last place).
39+
*
40+
* Constants:
41+
* The hexadecimal values are the intended ones for the following
42+
* constants. The decimal values may be used, provided that the
43+
* compiler will convert from decimal to binary accurately enough
44+
* to produce the hexadecimal values shown.
45+
*
46+
* Note: Assuming log() return accurate answer, the following
47+
* algorithm can be used to compute log1p(x) to within a few ULP:
48+
*
49+
* u = 1+x;
50+
* if(u==1.0) return x ; else
51+
* return log(u)*(x/(u-1.0));
52+
*
53+
* See HP-15C Advanced Functions Handbook, p.193.
54+
*/
55+
56+
use core::f64;
57+
58+
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
59+
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
60+
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
61+
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
62+
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
63+
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
64+
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
65+
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
66+
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
67+
68+
pub fn log1p(x: f64) -> f64 {
69+
let mut ui: u64 = x.to_bits();
70+
let hfsq: f64;
71+
let mut f: f64 = 0.;
72+
let mut c: f64 = 0.;
73+
let s: f64;
74+
let z: f64;
75+
let r: f64;
76+
let w: f64;
77+
let t1: f64;
78+
let t2: f64;
79+
let dk: f64;
80+
let hx: u32;
81+
let mut hu: u32;
82+
let mut k: i32;
83+
84+
hx = (ui >> 32) as u32;
85+
k = 1;
86+
if hx < 0x3fda827a || (hx >> 31) > 0 {
87+
/* 1+x < sqrt(2)+ */
88+
if hx >= 0xbff00000 {
89+
/* x <= -1.0 */
90+
if x == -1. {
91+
return x / 0.0; /* log1p(-1) = -inf */
92+
}
93+
return (x - x) / 0.0; /* log1p(x<-1) = NaN */
94+
}
95+
if hx << 1 < 0x3ca00000 << 1 {
96+
/* |x| < 2**-53 */
97+
/* underflow if subnormal */
98+
if (hx & 0x7ff00000) == 0 {
99+
force_eval!(x as f32);
100+
}
101+
return x;
102+
}
103+
if hx <= 0xbfd2bec4 {
104+
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
105+
k = 0;
106+
c = 0.;
107+
f = x;
108+
}
109+
} else if hx >= 0x7ff00000 {
110+
return x;
111+
}
112+
if k > 0 {
113+
ui = (1. + x).to_bits();
114+
hu = (ui >> 32) as u32;
115+
hu += 0x3ff00000 - 0x3fe6a09e;
116+
k = (hu >> 20) as i32 - 0x3ff;
117+
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
118+
if k < 54 {
119+
c = if k >= 2 {
120+
1. - (f64::from_bits(ui) - x)
121+
} else {
122+
x - (f64::from_bits(ui) - 1.)
123+
};
124+
c /= f64::from_bits(ui);
125+
} else {
126+
c = 0.;
127+
}
128+
/* reduce u into [sqrt(2)/2, sqrt(2)] */
129+
hu = (hu & 0x000fffff) + 0x3fe6a09e;
130+
ui = (hu as u64) << 32 | (ui & 0xffffffff);
131+
f = f64::from_bits(ui) - 1.;
132+
}
133+
hfsq = 0.5 * f * f;
134+
s = f / (2.0 + f);
135+
z = s * s;
136+
w = z * z;
137+
t1 = w * (LG2 + w * (LG4 + w * LG6));
138+
t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
139+
r = t2 + t1;
140+
dk = k as f64;
141+
return s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI;
142+
}

src/math/log1pf.rs

+97
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,97 @@
1+
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */
2+
/*
3+
* ====================================================
4+
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5+
*
6+
* Developed at SunPro, a Sun Microsystems, Inc. business.
7+
* Permission to use, copy, modify, and distribute this
8+
* software is freely granted, provided that this notice
9+
* is preserved.
10+
* ====================================================
11+
*/
12+
13+
use core::f32;
14+
15+
const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
16+
const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
17+
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
18+
const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
19+
const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
20+
const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
21+
const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
22+
23+
pub fn log1pf(x: f32) -> f32 {
24+
let mut ui: u32 = x.to_bits();
25+
let hfsq: f32;
26+
let mut f: f32 = 0.;
27+
let mut c: f32 = 0.;
28+
let s: f32;
29+
let z: f32;
30+
let r: f32;
31+
let w: f32;
32+
let t1: f32;
33+
let t2: f32;
34+
let dk: f32;
35+
let ix: u32;
36+
let mut iu: u32;
37+
let mut k: i32;
38+
39+
ix = ui;
40+
k = 1;
41+
if ix < 0x3ed413d0 || (ix >> 31) > 0 {
42+
/* 1+x < sqrt(2)+ */
43+
if ix >= 0xbf800000 {
44+
/* x <= -1.0 */
45+
if x == -1. {
46+
return x / 0.0; /* log1p(-1)=+inf */
47+
}
48+
return (x - x) / 0.0; /* log1p(x<-1)=NaN */
49+
}
50+
if ix << 1 < 0x33800000 << 1 {
51+
/* |x| < 2**-24 */
52+
/* underflow if subnormal */
53+
if (ix & 0x7f800000) == 0 {
54+
force_eval!(x * x);
55+
}
56+
return x;
57+
}
58+
if ix <= 0xbe95f619 {
59+
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
60+
k = 0;
61+
c = 0.;
62+
f = x;
63+
}
64+
} else if ix >= 0x7f800000 {
65+
return x;
66+
}
67+
if k > 0 {
68+
ui = (1. + x).to_bits();
69+
iu = ui;
70+
iu += 0x3f800000 - 0x3f3504f3;
71+
k = (iu >> 23) as i32 - 0x7f;
72+
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
73+
if k < 25 {
74+
c = if k >= 2 {
75+
1. - (f32::from_bits(ui) - x)
76+
} else {
77+
x - (f32::from_bits(ui) - 1.)
78+
};
79+
c /= f32::from_bits(ui);
80+
} else {
81+
c = 0.;
82+
}
83+
/* reduce u into [sqrt(2)/2, sqrt(2)] */
84+
iu = (iu & 0x007fffff) + 0x3f3504f3;
85+
ui = iu;
86+
f = f32::from_bits(ui) - 1.;
87+
}
88+
s = f / (2.0 + f);
89+
z = s * s;
90+
w = z * z;
91+
t1 = w * (LG2 + w * LG4);
92+
t2 = z * (LG1 + w * LG3);
93+
r = t2 + t1;
94+
hfsq = 0.5 * f * f;
95+
dk = k as f32;
96+
return s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI;
97+
}

src/math/mod.rs

+5-3
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,8 @@ mod hypotf;
1818
mod log;
1919
mod log10;
2020
mod log10f;
21+
mod log1p;
22+
mod log1pf;
2123
mod log2;
2224
mod log2f;
2325
mod logf;
@@ -35,9 +37,9 @@ mod truncf;
3537

3638
pub use self::{
3739
ceilf::ceilf, expf::expf, fabs::fabs, fabsf::fabsf, floor::floor, floorf::floorf, fmodf::fmodf,
38-
hypot::hypot, hypotf::hypotf, log::log, log10::log10, log10f::log10f, log2::log2, log2f::log2f,
39-
logf::logf, powf::powf, round::round, roundf::roundf, scalbn::scalbn, scalbnf::scalbnf,
40-
sqrt::sqrt, sqrtf::sqrtf, trunc::trunc, truncf::truncf,
40+
hypot::hypot, hypotf::hypotf, log::log, log10::log10, log10f::log10f, log1p::log1p,
41+
log1pf::log1pf, log2::log2, log2f::log2f, logf::logf, powf::powf, round::round, roundf::roundf,
42+
scalbn::scalbn, scalbnf::scalbnf, sqrt::sqrt, sqrtf::sqrtf, trunc::trunc, truncf::truncf,
4143
};
4244

4345
fn isnanf(x: f32) -> bool {

test-generator/src/main.rs

+2-1
Original file line numberDiff line numberDiff line change
@@ -664,6 +664,7 @@ f32_f32! {
664664
expf,
665665
// fdimf,
666666
log10f,
667+
log1pf,
667668
log2f,
668669
logf,
669670
roundf,
@@ -708,7 +709,7 @@ f64_f64! {
708709
floor,
709710
log,
710711
log10,
711-
// log1p,
712+
log1p,
712713
log2,
713714
round,
714715
// sin,

0 commit comments

Comments
 (0)