forked from rust-lang/compiler-builtins
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraits.rs
189 lines (156 loc) · 6.45 KB
/
traits.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
use core::ops;
use crate::int::{DInt, Int, MinInt};
/// Wrapper to extract the integer type half of the float's size
pub type HalfRep<F> = <<F as Float>::Int as DInt>::H;
/// Trait for some basic operations on floats
#[allow(dead_code)]
pub trait Float:
Copy
+ core::fmt::Debug
+ PartialEq
+ PartialOrd
+ ops::AddAssign
+ ops::MulAssign
+ ops::Add<Output = Self>
+ ops::Sub<Output = Self>
+ ops::Div<Output = Self>
+ ops::Rem<Output = Self>
{
/// A uint of the same width as the float
type Int: Int<OtherSign = Self::SignedInt, UnsignedInt = Self::Int>;
/// A int of the same width as the float
type SignedInt: Int + MinInt<OtherSign = Self::Int, UnsignedInt = Self::Int>;
/// An int capable of containing the exponent bits plus a sign bit. This is signed.
type ExpInt: Int;
const ZERO: Self;
const ONE: Self;
/// The bitwidth of the float type.
const BITS: u32;
/// The bitwidth of the significand.
const SIG_BITS: u32;
/// The bitwidth of the exponent.
const EXP_BITS: u32 = Self::BITS - Self::SIG_BITS - 1;
/// The saturated (maximum bitpattern) value of the exponent, i.e. the infinite
/// representation.
///
/// This is in the rightmost position, use `EXP_MASK` for the shifted value.
const EXP_SAT: u32 = (1 << Self::EXP_BITS) - 1;
/// The exponent bias value.
const EXP_BIAS: u32 = Self::EXP_SAT >> 1;
/// A mask for the sign bit.
const SIGN_MASK: Self::Int;
/// A mask for the significand.
const SIG_MASK: Self::Int;
/// The implicit bit of the float format.
const IMPLICIT_BIT: Self::Int;
/// A mask for the exponent.
const EXP_MASK: Self::Int;
/// Returns `self` transmuted to `Self::Int`
fn to_bits(self) -> Self::Int;
/// Returns `self` transmuted to `Self::SignedInt`
fn to_bits_signed(self) -> Self::SignedInt;
/// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be
/// represented in multiple different ways. This method returns `true` if two NaNs are
/// compared.
fn eq_repr(self, rhs: Self) -> bool;
/// Returns true if the sign is negative
fn is_sign_negative(self) -> bool;
/// Returns the exponent, not adjusting for bias.
fn exp(self) -> Self::ExpInt;
/// Returns the significand with no implicit bit (or the "fractional" part)
fn frac(self) -> Self::Int;
/// Returns the significand with implicit bit
fn imp_frac(self) -> Self::Int;
/// Returns a `Self::Int` transmuted back to `Self`
fn from_bits(a: Self::Int) -> Self;
/// Constructs a `Self` from its parts. Inputs are treated as bits and shifted into position.
fn from_parts(negative: bool, exponent: Self::Int, significand: Self::Int) -> Self;
fn abs(self) -> Self {
let abs_mask = !Self::SIGN_MASK;
Self::from_bits(self.to_bits() & abs_mask)
}
/// Returns (normalized exponent, normalized significand)
fn normalize(significand: Self::Int) -> (i32, Self::Int);
/// Returns if `self` is subnormal
fn is_subnormal(self) -> bool;
}
macro_rules! float_impl {
($ty:ident, $ity:ident, $sity:ident, $expty:ident, $bits:expr, $significand_bits:expr) => {
impl Float for $ty {
type Int = $ity;
type SignedInt = $sity;
type ExpInt = $expty;
const ZERO: Self = 0.0;
const ONE: Self = 1.0;
const BITS: u32 = $bits;
const SIG_BITS: u32 = $significand_bits;
const SIGN_MASK: Self::Int = 1 << (Self::BITS - 1);
const SIG_MASK: Self::Int = (1 << Self::SIG_BITS) - 1;
const IMPLICIT_BIT: Self::Int = 1 << Self::SIG_BITS;
const EXP_MASK: Self::Int = !(Self::SIGN_MASK | Self::SIG_MASK);
fn to_bits(self) -> Self::Int {
self.to_bits()
}
fn to_bits_signed(self) -> Self::SignedInt {
self.to_bits() as Self::SignedInt
}
fn eq_repr(self, rhs: Self) -> bool {
#[cfg(feature = "mangled-names")]
fn is_nan(x: $ty) -> bool {
// When using mangled-names, the "real" compiler-builtins might not have the
// necessary builtin (__unordtf2) to test whether `f128` is NaN.
// FIXME(f16_f128): Remove once the nightly toolchain has the __unordtf2 builtin
// x is NaN if all the bits of the exponent are set and the significand is non-0
x.to_bits() & $ty::EXP_MASK == $ty::EXP_MASK && x.to_bits() & $ty::SIG_MASK != 0
}
#[cfg(not(feature = "mangled-names"))]
fn is_nan(x: $ty) -> bool {
x.is_nan()
}
if is_nan(self) && is_nan(rhs) {
true
} else {
self.to_bits() == rhs.to_bits()
}
}
fn is_sign_negative(self) -> bool {
self.is_sign_negative()
}
fn exp(self) -> Self::ExpInt {
((self.to_bits() & Self::EXP_MASK) >> Self::SIG_BITS) as Self::ExpInt
}
fn frac(self) -> Self::Int {
self.to_bits() & Self::SIG_MASK
}
fn imp_frac(self) -> Self::Int {
self.frac() | Self::IMPLICIT_BIT
}
fn from_bits(a: Self::Int) -> Self {
Self::from_bits(a)
}
fn from_parts(negative: bool, exponent: Self::Int, significand: Self::Int) -> Self {
Self::from_bits(
((negative as Self::Int) << (Self::BITS - 1))
| ((exponent << Self::SIG_BITS) & Self::EXP_MASK)
| (significand & Self::SIG_MASK),
)
}
fn normalize(significand: Self::Int) -> (i32, Self::Int) {
let shift = significand.leading_zeros().wrapping_sub(Self::EXP_BITS);
(
1i32.wrapping_sub(shift as i32),
significand << shift as Self::Int,
)
}
fn is_subnormal(self) -> bool {
(self.to_bits() & Self::EXP_MASK) == Self::Int::ZERO
}
}
};
}
#[cfg(f16_enabled)]
float_impl!(f16, u16, i16, i8, 16, 10);
float_impl!(f32, u32, i32, i16, 32, 23);
float_impl!(f64, u64, i64, i16, 64, 52);
#[cfg(f128_enabled)]
float_impl!(f128, u128, i128, i16, 128, 112);