.. currentmodule:: pandas
.. ipython:: python :suppress: import numpy as np import pandas as pd randn = np.random.randn np.set_printoptions(precision=4, suppress=True) from pandas.compat import lrange options.display.max_rows=15
Series and Index are equipped with a set of string processing methods
that make it easy to operate on each element of the array. Perhaps most
importantly, these methods exclude missing/NA values automatically. These are
accessed via the str
attribute and generally have names matching
the equivalent (scalar) built-in string methods:
.. ipython:: python s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) s.str.lower() s.str.upper() s.str.len()
.. ipython:: python idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank']) idx.str.strip() idx.str.lstrip() idx.str.rstrip()
The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance, you may have columns with leading or trailing whitespace:
.. ipython:: python df = pd.DataFrame(randn(3, 2), columns=[' Column A ', ' Column B '], index=range(3)) df
Since df.columns
is an Index object, we can use the .str
accessor
.. ipython:: python df.columns.str.strip() df.columns.str.lower()
These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing whitespaces, lowercasing all names, and replacing any remaining whitespaces with underscores:
.. ipython:: python df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_') df
Note
If you have a Series
where lots of elements are repeated
(i.e. the number of unique elements in the Series
is a lot smaller than the length of the
Series
), it can be faster to convert the original Series
to one of type
category
and then use .str.<method>
or .dt.<property>
on that.
The performance difference comes from the fact that, for Series
of type category
, the
string operations are done on the .categories
and not on each element of the
Series
.
Please note that a Series
of type category
with string .categories
has
some limitations in comparison of Series
of type string (e.g. you can't add strings to
each other: s + " " + s
won't work if s
is a Series
of type category
). Also,
.str
methods which operate on elements of type list
are not available on such a
Series
.
Methods like split
return a Series of lists:
.. ipython:: python s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) s2.str.split('_')
Elements in the split lists can be accessed using get
or []
notation:
.. ipython:: python s2.str.split('_').str.get(1) s2.str.split('_').str[1]
Easy to expand this to return a DataFrame using expand
.
.. ipython:: python s2.str.split('_', expand=True)
It is also possible to limit the number of splits:
.. ipython:: python s2.str.split('_', expand=True, n=1)
rsplit
is similar to split
except it works in the reverse direction,
i.e., from the end of the string to the beginning of the string:
.. ipython:: python s2.str.rsplit('_', expand=True, n=1)
Methods like replace
and findall
take regular expressions, too:
.. ipython:: python s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', '', np.nan, 'CABA', 'dog', 'cat']) s3 s3.str.replace('^.a|dog', 'XX-XX ', case=False)
Some caution must be taken to keep regular expressions in mind! For example, the following code will cause trouble because of the regular expression meaning of $:
.. ipython:: python # Consider the following badly formatted financial data dollars = pd.Series(['12', '-$10', '$10,000']) # This does what you'd naively expect: dollars.str.replace('$', '') # But this doesn't: dollars.str.replace('-$', '-') # We need to escape the special character (for >1 len patterns) dollars.str.replace(r'-\$', '-')
You can use []
notation to directly index by position locations. If you index past the end
of the string, the result will be a NaN
.
.. ipython:: python s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) s.str[0] s.str[1]
.. versionadded:: 0.13.0
Warning
In version 0.18.0, extract
gained the expand
argument. When
expand=False
it returns a Series
, Index
, or
DataFrame
, depending on the subject and regular expression
pattern (same behavior as pre-0.18.0). When expand=True
it
always returns a DataFrame
, which is more consistent and less
confusing from the perspective of a user.
The extract
method accepts a regular expression with at least one
capture group.
Extracting a regular expression with more than one group returns a DataFrame with one column per group.
.. ipython:: python pd.Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)', expand=False)
Elements that do not match return a row filled with NaN
. Thus, a
Series of messy strings can be "converted" into a like-indexed Series
or DataFrame of cleaned-up or more useful strings, without
necessitating get()
to access tuples or re.match
objects. The
dtype of the result is always object, even if no match is found and
the result only contains NaN
.
Named groups like
.. ipython:: python pd.Series(['a1', 'b2', 'c3']).str.extract('(?P<letter>[ab])(?P<digit>\d)', expand=False)
and optional groups like
.. ipython:: python pd.Series(['a1', 'b2', '3']).str.extract('([ab])?(\d)', expand=False)
can also be used. Note that any capture group names in the regular expression will be used for column names; otherwise capture group numbers will be used.
Extracting a regular expression with one group returns a DataFrame
with one column if expand=True
.
.. ipython:: python pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True)
It returns a Series if expand=False
.
.. ipython:: python pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)
Calling on an Index
with a regex with exactly one capture group
returns a DataFrame
with one column if expand=True
,
.. ipython:: python s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"]) s s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
It returns an Index
if expand=False
.
.. ipython:: python s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Calling on an Index
with a regex with more than one capture group
returns a DataFrame
if expand=True
.
.. ipython:: python s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
It raises ValueError
if expand=False
.
>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: This pattern contains no groups to capture.
The table below summarizes the behavior of extract(expand=False)
(input subject in first column, number of groups in regex in
first row)
1 group | >1 group | |
Index | Index | ValueError |
Series | Series | DataFrame |
.. versionadded:: 0.18.0
Unlike extract
(which returns only the first match),
.. ipython:: python s = pd.Series(["a1a2", "b1", "c1"], ["A", "B", "C"]) s two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])' s.str.extract(two_groups, expand=True)
the extractall
method returns every match. The result of
extractall
is always a DataFrame
with a MultiIndex
on its
rows. The last level of the MultiIndex
is named match
and
indicates the order in the subject.
.. ipython:: python s.str.extractall(two_groups)
When each subject string in the Series has exactly one match,
.. ipython:: python s = pd.Series(['a3', 'b3', 'c2']) s
then extractall(pat).xs(0, level='match')
gives the same result as
extract(pat)
.
.. ipython:: python extract_result = s.str.extract(two_groups, expand=True) extract_result extractall_result = s.str.extractall(two_groups) extractall_result extractall_result.xs(0, level="match")
You can check whether elements contain a pattern:
.. ipython:: python pattern = r'[a-z][0-9]' pd.Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern)
or match a pattern:
.. ipython:: python pd.Series(['1', '2', '3a', '3b', '03c']).str.match(pattern, as_indexer=True)
The distinction between match
and contains
is strictness: match
relies on strict re.match
, while contains
relies on re.search
.
Warning
In previous versions, match
was for extracting groups,
returning a not-so-convenient Series of tuples. The new method extract
(described in the previous section) is now preferred.
This old, deprecated behavior of match
is still the default. As
demonstrated above, use the new behavior by setting as_indexer=True
.
In this mode, match
is analogous to contains
, returning a boolean
Series. The new behavior will become the default behavior in a future
release.
- Methods like
match
,contains
,startswith
, andendswith
take - an extra
na
argument so missing values can be considered True or False:
.. ipython:: python s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) s4.str.contains('A', na=False)
You can extract dummy variables from string columns.
For example if they are separated by a '|'
:
.. ipython:: python s = pd.Series(['a', 'a|b', np.nan, 'a|c']) s.str.get_dummies(sep='|')
See also :func:`~pandas.get_dummies`.
Method | Description |
---|---|
:meth:`~Series.str.cat` | Concatenate strings |
:meth:`~Series.str.split` | Split strings on delimiter |
:meth:`~Series.str.rsplit` | Split strings on delimiter working from the end of the string |
:meth:`~Series.str.get` | Index into each element (retrieve i-th element) |
:meth:`~Series.str.join` | Join strings in each element of the Series with passed separator |
:meth:`~Series.str.contains` | Return boolean array if each string contains pattern/regex |
:meth:`~Series.str.replace` | Replace occurrences of pattern/regex with some other string |
:meth:`~Series.str.repeat` | Duplicate values (s.str.repeat(3) equivalent to x * 3 ) |
:meth:`~Series.str.pad` | Add whitespace to left, right, or both sides of strings |
:meth:`~Series.str.center` | Equivalent to str.center |
:meth:`~Series.str.ljust` | Equivalent to str.ljust |
:meth:`~Series.str.rjust` | Equivalent to str.rjust |
:meth:`~Series.str.zfill` | Equivalent to str.zfill |
:meth:`~Series.str.wrap` | Split long strings into lines with length less than a given width |
:meth:`~Series.str.slice` | Slice each string in the Series |
:meth:`~Series.str.slice_replace` | Replace slice in each string with passed value |
:meth:`~Series.str.count` | Count occurrences of pattern |
:meth:`~Series.str.startswith` | Equivalent to str.startswith(pat) for each element |
:meth:`~Series.str.endswith` | Equivalent to str.endswith(pat) for each element |
:meth:`~Series.str.findall` | Compute list of all occurrences of pattern/regex for each string |
:meth:`~Series.str.match` | Call re.match on each element, returning matched groups as list |
:meth:`~Series.str.extract` | Call re.search on each element, returning DataFrame with one row for each element and one column for each regex capture group |
:meth:`~Series.str.extractall` | Call re.findall on each element, returning DataFrame with one row for each match and one column for each regex capture group |
:meth:`~Series.str.len` | Compute string lengths |
:meth:`~Series.str.strip` | Equivalent to str.strip |
:meth:`~Series.str.rstrip` | Equivalent to str.rstrip |
:meth:`~Series.str.lstrip` | Equivalent to str.lstrip |
:meth:`~Series.str.partition` | Equivalent to str.partition |
:meth:`~Series.str.rpartition` | Equivalent to str.rpartition |
:meth:`~Series.str.lower` | Equivalent to str.lower |
:meth:`~Series.str.upper` | Equivalent to str.upper |
:meth:`~Series.str.find` | Equivalent to str.find |
:meth:`~Series.str.rfind` | Equivalent to str.rfind |
:meth:`~Series.str.index` | Equivalent to str.index |
:meth:`~Series.str.rindex` | Equivalent to str.rindex |
:meth:`~Series.str.capitalize` | Equivalent to str.capitalize |
:meth:`~Series.str.swapcase` | Equivalent to str.swapcase |
:meth:`~Series.str.normalize` | Return Unicode normal form. Equivalent to unicodedata.normalize |
:meth:`~Series.str.translate` | Equivalent to str.translate |
:meth:`~Series.str.isalnum` | Equivalent to str.isalnum |
:meth:`~Series.str.isalpha` | Equivalent to str.isalpha |
:meth:`~Series.str.isdigit` | Equivalent to str.isdigit |
:meth:`~Series.str.isspace` | Equivalent to str.isspace |
:meth:`~Series.str.islower` | Equivalent to str.islower |
:meth:`~Series.str.isupper` | Equivalent to str.isupper |
:meth:`~Series.str.istitle` | Equivalent to str.istitle |
:meth:`~Series.str.isnumeric` | Equivalent to str.isnumeric |
:meth:`~Series.str.isdecimal` | Equivalent to str.isdecimal |