forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenerative_Adversarial_Network_MNIST.py
269 lines (213 loc) · 7.77 KB
/
Generative_Adversarial_Network_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""
Generative Adversarial Network
Objective : To train a GAN model to generate handwritten digits that can be transferred to other domains.
Resources GAN Theory :
https://en.wikipedia.org/wiki/Generative_adversarial_network
Resources PyTorch: https://pytorch.org/
Download dataset from :
PyTorch internal function
1. Fetch the Dataset with PyTorch function.
2. Create Dataloader.
3. Create Discriminator and Generator.
4. Set the hyperparameters and models.
5. Set the loss functions.
6. Create the training loop.
7. Visualize the losses.
8. Visualize the result from GAN.
"""
import numpy as np
import torch
import matplotlib.pyplot as plt
from torchvision import datasets
import torchvision.transforms as transforms
# number of subprocesses to use for data loading
num_workers = 0
# how many samples per batch to load
batch_size = 64
# convert data to torch.FloatTensor
transform = transforms.ToTensor()
# get the training datasets
train_data = datasets.MNIST(root='data', train=True,
download=True, transform=transform)
# prepare data loader
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
num_workers=num_workers)
import torch.nn as nn
import torch.nn.functional as F
# Creating Generator and Discriminator for GAN
class discriminator(nn.Module):
def __init__(self,input_size,output_size,hidden_dim):
super(discriminator,self).__init__()
#defining the layers of the discriminator
self.fc1 = nn.Linear(input_size,hidden_dim*4)
self.fc2 = nn.Linear(hidden_dim*4,hidden_dim*2)
self.fc3 = nn.Linear(hidden_dim*2,hidden_dim)
#final fully connected layer
self.fc4 = nn.Linear(hidden_dim,output_size)
#dropout layer
self.dropout = nn.Dropout(0.2)
def forward(self,x):
# pass x through all layers
# apply leaky relu activation to all hidden layers
x = x.view(-1,28*28) #flattening the image
x = F.leaky_relu(self.fc1(x),0.2)
x = self.dropout(x)
x = F.leaky_relu(self.fc2(x),0.2)
x = self.dropout(x)
x = F.leaky_relu(self.fc3(x),0.2)
x = self.dropout(x)
x_out = self.fc4(x)
return x_out
class generator(nn.Module):
def __init__(self, input_size, output_size,hidden_dim):
super(generator, self).__init__()
# define all layers
self.fc1 = nn.Linear(input_size,hidden_dim)
self.fc2 = nn.Linear(hidden_dim,hidden_dim*2)
self.fc3 = nn.Linear(hidden_dim*2,hidden_dim*4)
#final layer
self.fc4 = nn.Linear(hidden_dim*4,output_size)
#dropout layer
self.dropout = nn.Dropout(0.2)
def forward(self, x):
# pass x through all layers
# final layer should have tanh applied
x = F.leaky_relu(self.fc1(x),0.2)
x = self.dropout(x)
x = F.leaky_relu(self.fc2(x),0.2)
x = self.dropout(x)
x = F.leaky_relu(self.fc3(x),0.2)
x = self.dropout(x)
x_out = F.tanh(self.fc4(x))
return x_out
# Calculate losses
def real_loss(D_out, smooth=False):
# compare logits to real labels
# smooth labels if smooth=True
#puting it into cuda
batch_size = D_out.size(0)
if smooth:
labels = torch.ones(batch_size).cuda()*0.9
else:
labels = torch.ones(batch_size).cuda()
criterion = nn.BCEWithLogitsLoss()
loss = criterion(D_out.squeeze(),labels)
return loss
def fake_loss(D_out):
# compare logits to fake labels
batch_size = D_out.size(0)
labels = torch.zeros(batch_size).cuda()
criterion = nn.BCEWithLogitsLoss()
loss = criterion(D_out.squeeze(),labels)
return loss
# Discriminator hyperparams
# Size of input image to discriminator (28*28)
input_size = 784
# Size of discriminator output (real or fake)
d_output_size = 1
# Size of *last* hidden layer in the discriminator
d_hidden_size = 32
# Generator hyperparams
# Size of latent vector to give to generator
z_size = 100
# Size of discriminator output (generated image)
g_output_size = 784
# Size of *first* hidden layer in the generator
g_hidden_size = 32
# instantiate discriminator and generator and put it in cuda mode
D = discriminator(input_size, d_output_size,d_hidden_size).cuda()
G = generator(z_size, g_output_size, g_hidden_size).cuda()
import pickle as pkl
# training hyperparams
num_epochs = 40
# keep track of loss and generated, "fake" samples
samples = []
losses = []
print_every = 400
# Get some fixed data for sampling. These are images that are held
# constant throughout training, and allow us to inspect the model's performance
sample_size=16
fixed_z = np.random.uniform(-1, 1, size=(sample_size, z_size))
fixed_z = torch.from_numpy(fixed_z).float().cuda()
# train the network
D.train()
G.train()
for epoch in range(num_epochs):
for batch_i, (real_images, _) in enumerate(train_loader):
batch_size = real_images.size(0)
## Important rescaling step ##
real_images = (real_images*2 - 1).cuda() # rescale input images from [0,1) to [-1, 1)
# ============================================
# TRAIN THE DISCRIMINATOR
# ============================================
d_optimizer.zero_grad()
# 1. Train with real images
# Compute the discriminator losses on real images
# use smoothed labels
D_real = D(real_images)
d_real_loss = real_loss(D_real,smooth=True)
# 2. Train with fake images
# Generate fake images
z = np.random.uniform(-1, 1, size=(batch_size, z_size))
z = torch.from_numpy(z).float().cuda()
fake_images = G(z)
# Compute the discriminator losses on fake images
D_fake = D(fake_images)
d_fake_loss = fake_loss(D_fake)
# add up real and fake losses and perform backprop
d_loss = d_real_loss + d_fake_loss
d_loss.backward()
d_optimizer.step()
# =========================================
# TRAIN THE GENERATOR
# =========================================
g_optimizer.zero_grad()
# 1. Train with fake images and flipped labels
# Generate fake images
z = np.random.uniform(-1, 1, size=(batch_size, z_size))
z = torch.from_numpy(z).float().cuda()
fake_images = G(z)
# Compute the discriminator losses on fake images
# using flipped labels!
D_fake = D(fake_images)
# perform backprop
g_loss = real_loss(D_fake)
g_loss.backward()
g_optimizer.step()
# Print some loss stats
if batch_i % print_every == 0:
# print discriminator and generator loss
print('Epoch [{:5d}/{:5d}] | d_loss: {:6.4f} | g_loss: {:6.4f}'.format(
epoch+1, num_epochs, d_loss.item(), g_loss.item()))
## AFTER EACH EPOCH##
# append discriminator loss and generator loss
losses.append((d_loss.item(), g_loss.item()))
# generate and save sample, fake images
G.eval() # eval mode for generating samples
samples_z = G(fixed_z)
samples.append(samples_z)
G.train() # back to train mode
# Save training generator samples
with open('train_samples.pkl', 'wb') as f:
pkl.dump(samples, f)
#ploting Discriminator and Generator loss
fig, ax = plt.subplots()
losses = np.array(losses)
plt.plot(losses.T[0], label='Discriminator')
plt.plot(losses.T[1], label='Generator')
plt.title("Training Losses")
plt.legend()
plt.show()
#Viewing the results of the GAN
def view_samples(epoch, samples):
fig, axes = plt.subplots(figsize=(7,7), nrows=4, ncols=4, sharey=True, sharex=True)
fig.suptitle("Generated Digits")
for ax, img in zip(axes.flatten(), samples[epoch]):
img = img.detach().cpu().numpy()
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
im = ax.imshow(img.reshape((28,28)), cmap='Greys_r')
with open('train_samples.pkl', 'rb') as f:
samples = pkl.load(f)
view_samples(-1,samples)
plt.show()