forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathv0.21.1.txt
170 lines (122 loc) · 8.04 KB
/
v0.21.1.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
.. _whatsnew_0211:
v0.21.1
-------
This is a minor bug-fix release in the 0.21.x series and includes some small regression fixes,
bug fixes and performance improvements.
We recommend that all users upgrade to this version.
Highlights include:
- Temporarily restore matplotlib datetime plotting functionality. This should
resolve issues for users who relied implicitly on pandas to plot datetimes
with matplotlib. See :ref:`here <whatsnew_0211.special>`.
- Improvements to the Parquet IO functions introduced in 0.21.0. See
:ref:`here <whatsnew_0211.enhancements.parquet>`.
.. contents:: What's new in v0.21.1
:local:
:backlinks: none
.. _whatsnew_0211.special:
Restore Matplotlib datetime Converter Registration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pandas implements some matplotlib converters for nicely formatting the axis
labels on plots with ``datetime`` or ``Period`` values. Prior to pandas 0.21.0,
these were implicitly registered with matplotlib, as a side effect of ``import
pandas``.
In pandas 0.21.0, we required users to explicitly register the
converter. This caused problems for some users who relied on those converters
being present for regular ``matplotlib.pyplot`` plotting methods, so we're
temporarily reverting that change; pandas will again register the converters on
import.
We've added a new option to control the converters:
``pd.options.plotting.matplotlib.register_converters``. By default, they are
registered. Toggling this to ``False`` removes pandas' formatters and restore
any converters we overwrote when registering them (:issue:`18301`).
We're working with the matplotlib developers to make this easier. We're trying
to balance user convenience (automatically registering the converters) with
import performance and best practices (importing pandas shouldn't have the side
effect of overwriting any custom converters you've already set). In the future
we hope to have most of the datetime formatting functionality in matplotlib,
with just the pandas-specific converters in pandas. We'll then gracefully
deprecate the automatic registration of converters in favor of users explicitly
registering them when they want them.
.. _whatsnew_0211.enhancements:
New features
~~~~~~~~~~~~
.. _whatsnew_0211.enhancements.parquet:
Improvements to the Parquet IO functionality
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- :func:`read_parquet` now allows to specify the columns to read from a parquet file (:issue:`18154`)
- :func:`read_parquet` now allows to specify kwargs which are passed to the respective engine (:issue:`18216`)
.. _whatsnew_0211.enhancements.other:
Other Enhancements
^^^^^^^^^^^^^^^^^^
- :meth:`Timestamp.timestamp` is now available in Python 2.7. (:issue:`17329`)
- :class:`Grouper` and :class:`TimeGrouper` now have a friendly repr output (:issue:`18203`).
.. _whatsnew_0211.deprecations:
Deprecations
~~~~~~~~~~~~
- ``pandas.tseries.register`` has been renamed to
:func:`pandas.plotting.register_matplotlib_converters`` (:issue:`18301`)
.. _whatsnew_0211.performance:
Performance Improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Improved performance of plotting large series/dataframes (:issue:`18236`).
.. _whatsnew_0211.bug_fixes:
Bug Fixes
~~~~~~~~~
-
Conversion
^^^^^^^^^^
- Bug in :class:`TimedeltaIndex` subtraction could incorrectly overflow when ``NaT`` is present (:issue:`17791`)
- Bug in :class:`DatetimeIndex` subtracting datetimelike from DatetimeIndex could fail to overflow (:issue:`18020`)
- Bug in :meth:`IntervalIndex.copy` when copying and ``IntervalIndex`` with non-default ``closed`` (:issue:`18339`)
- Bug in :func:`DataFrame.to_dict` where columns of datetime that are tz-aware were not converted to required arrays when used with ``orient='records'``, raising``TypeError` (:issue:`18372`)
- Bug in :class:`DateTimeIndex` and :meth:`date_range` where mismatching tz-aware ``start`` and ``end`` timezones would not raise an err if ``end.tzinfo`` is None (:issue:`18431`)
- Bug in :meth:`Series.fillna` which raised when passed a long integer on Python 2 (:issue:`18159`).
Indexing
^^^^^^^^
- Bug in a boolean comparison of a ``datetime.datetime`` and a ``datetime64[ns]`` dtype Series (:issue:`17965`)
- Bug where a ``MultiIndex`` with more than a million records was not raising ``AttributeError`` when trying to access a missing attribute (:issue:`18165`)
- Bug in :class:`IntervalIndex` constructor when a list of intervals is passed with non-default ``closed`` (:issue:`18334`)
- Bug in ``Index.putmask`` when an invalid mask passed (:issue:`18368`)
- Bug in masked assignment of a ``timedelta64[ns]`` dtype ``Series``, incorrectly coerced to float (:issue:`18493`)
I/O
^^^
- Bug in class:`~pandas.io.stata.StataReader` not converting date/time columns with display formatting addressed (:issue:`17990`). Previously columns with display formatting were normally left as ordinal numbers and not converted to datetime objects.
- Bug in :func:`read_csv` when reading a compressed UTF-16 encoded file (:issue:`18071`)
- Bug in :func:`read_csv` for handling null values in index columns when specifying ``na_filter=False`` (:issue:`5239`)
- Bug in :func:`read_csv` when reading numeric category fields with high cardinality (:issue:`18186`)
- Bug in :meth:`DataFrame.to_csv` when the table had ``MultiIndex`` columns, and a list of strings was passed in for ``header`` (:issue:`5539`)
- Bug in parsing integer datetime-like columns with specified format in ``read_sql`` (:issue:`17855`).
- Bug in :meth:`DataFrame.to_msgpack` when serializing data of the numpy.bool_ datatype (:issue:`18390`)
- Bug in :func:`read_json` not decoding when reading line deliminted JSON from S3 (:issue:`17200`)
- Bug in :func:`pandas.io.json.json_normalize` to avoid modification of ``meta`` (:issue:`18610`)
- Bug in :func:`to_latex` where repeated multi-index values were not printed even though a higher level index differed from the previous row (:issue:`14484`)
- Bug when reading NaN-only categorical columns in :class:`HDFStore` (:issue:`18413`)
- Bug in :meth:`DataFrame.to_latex` with ``longtable=True`` where a latex multicolumn always spanned over three columns (:issue:`17959`)
Plotting
^^^^^^^^
- Bug in ``DataFrame.plot()`` and ``Series.plot()`` with :class:`DatetimeIndex` where a figure generated by them is not pickleable in Python 3 (:issue:`18439`)
Groupby/Resample/Rolling
^^^^^^^^^^^^^^^^^^^^^^^^
- Bug in ``DataFrame.resample(...).apply(...)`` when there is a callable that returns different columns (:issue:`15169`)
- Bug in ``DataFrame.resample(...)`` when there is a time change (DST) and resampling frequecy is 12h or higher (:issue:`15549`)
- Bug in ``pd.DataFrameGroupBy.count()`` when counting over a datetimelike column (:issue:`13393`)
- Bug in ``rolling.var`` where calculation is inaccurate with a zero-valued array (:issue:`18430`)
Reshaping
^^^^^^^^^
- Error message in ``pd.merge_asof()`` for key datatype mismatch now includes datatype of left and right key (:issue:`18068`)
- Bug in ``pd.concat`` when empty and non-empty DataFrames or Series are concatenated (:issue:`18178` :issue:`18187`)
- Bug in ``DataFrame.filter(...)`` when :class:`unicode` is passed as a condition in Python 2 (:issue:`13101`)
- Bug when merging empty DataFrames when ``np.seterr(divide='raise')`` is set (:issue:`17776`)
Numeric
^^^^^^^
- Bug in ``pd.Series.rolling.skew()`` and ``rolling.kurt()`` with all equal values has floating issue (:issue:`18044`)
Categorical
^^^^^^^^^^^
- Bug in :meth:`DataFrame.astype` where casting to 'category' on an empty ``DataFrame`` causes a segmentation fault (:issue:`18004`)
- Error messages in the testing module have been improved when items have different ``CategoricalDtype`` (:issue:`18069`)
- ``CategoricalIndex`` can now correctly take a ``pd.api.types.CategoricalDtype`` as its dtype (:issue:`18116`)
- Bug in ``Categorical.unique()`` returning read-only ``codes`` array when all categories were ``NaN`` (:issue:`18051`)
- Bug in ``DataFrame.groupby(axis=1)`` with a ``CategoricalIndex`` (:issue:`18432`)
String
^^^^^^
- :meth:`Series.str.split()` will now propogate ``NaN`` values across all expanded columns instead of ``None`` (:issue:`18450`)