@@ -290,7 +290,7 @@ static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
290
290
cl::desc(" A flag that overrides the target's max interleave factor for "
291
291
" vectorized loops." ));
292
292
293
- static cl::opt<unsigned > ForceTargetInstructionCost (
293
+ cl::opt<unsigned > ForceTargetInstructionCost (
294
294
" force-target-instruction-cost" , cl::init(0 ), cl::Hidden,
295
295
cl::desc(" A flag that overrides the target's expected cost for "
296
296
" an instruction to a single constant value. Mostly "
@@ -412,14 +412,6 @@ static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
412
412
return DL.getTypeAllocSizeInBits (Ty) != DL.getTypeSizeInBits (Ty);
413
413
}
414
414
415
- // / A helper function that returns the reciprocal of the block probability of
416
- // / predicated blocks. If we return X, we are assuming the predicated block
417
- // / will execute once for every X iterations of the loop header.
418
- // /
419
- // / TODO: We should use actual block probability here, if available. Currently,
420
- // / we always assume predicated blocks have a 50% chance of executing.
421
- static unsigned getReciprocalPredBlockProb () { return 2 ; }
422
-
423
415
// / Returns "best known" trip count for the specified loop \p L as defined by
424
416
// / the following procedure:
425
417
// / 1) Returns exact trip count if it is known.
@@ -1621,6 +1613,16 @@ class LoopVectorizationCostModel {
1621
1613
// / \p VF is the vectorization factor chosen for the original loop.
1622
1614
bool isEpilogueVectorizationProfitable (const ElementCount VF) const ;
1623
1615
1616
+ // / Return the cost of instructions in an inloop reduction pattern, if I is
1617
+ // / part of that pattern.
1618
+ std::optional<InstructionCost>
1619
+ getReductionPatternCost (Instruction *I, ElementCount VF, Type *VectorTy,
1620
+ TTI::TargetCostKind CostKind) const ;
1621
+
1622
+ // / Returns the execution time cost of an instruction for a given vector
1623
+ // / width. Vector width of one means scalar.
1624
+ VectorizationCostTy getInstructionCost (Instruction *I, ElementCount VF);
1625
+
1624
1626
private:
1625
1627
unsigned NumPredStores = 0 ;
1626
1628
@@ -1646,21 +1648,11 @@ class LoopVectorizationCostModel {
1646
1648
// / of elements.
1647
1649
ElementCount getMaxLegalScalableVF (unsigned MaxSafeElements);
1648
1650
1649
- // / Returns the execution time cost of an instruction for a given vector
1650
- // / width. Vector width of one means scalar.
1651
- VectorizationCostTy getInstructionCost (Instruction *I, ElementCount VF);
1652
-
1653
1651
// / The cost-computation logic from getInstructionCost which provides
1654
1652
// / the vector type as an output parameter.
1655
1653
InstructionCost getInstructionCost (Instruction *I, ElementCount VF,
1656
1654
Type *&VectorTy);
1657
1655
1658
- // / Return the cost of instructions in an inloop reduction pattern, if I is
1659
- // / part of that pattern.
1660
- std::optional<InstructionCost>
1661
- getReductionPatternCost (Instruction *I, ElementCount VF, Type *VectorTy,
1662
- TTI::TargetCostKind CostKind) const ;
1663
-
1664
1656
// / Calculate vectorization cost of memory instruction \p I.
1665
1657
InstructionCost getMemoryInstructionCost (Instruction *I, ElementCount VF);
1666
1658
@@ -7297,7 +7289,10 @@ LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7297
7289
if (!MaxFactors.hasVector ())
7298
7290
return VectorizationFactor::Disabled ();
7299
7291
7300
- // Select the optimal vectorization factor.
7292
+ // Select the optimal vectorization factor according to the legacy cost-model.
7293
+ // This is now only used to verify the decisions by the new VPlan-based
7294
+ // cost-model and will be retired once the VPlan-based cost-model is
7295
+ // stabilized.
7301
7296
VectorizationFactor VF = selectVectorizationFactor (VFCandidates);
7302
7297
assert ((VF.Width .isScalar () || VF.ScalarCost > 0 ) && " when vectorizing, the scalar cost must be non-zero." );
7303
7298
if (!hasPlanWithVF (VF.Width )) {
@@ -7308,6 +7303,196 @@ LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7308
7303
return VF;
7309
7304
}
7310
7305
7306
+ InstructionCost VPCostContext::getLegacyCost (Instruction *UI,
7307
+ ElementCount VF) const {
7308
+ return CM.getInstructionCost (UI, VF).first ;
7309
+ }
7310
+
7311
+ bool VPCostContext::skipCostComputation (Instruction *UI, bool IsVector) const {
7312
+ return (IsVector && CM.VecValuesToIgnore .contains (UI)) ||
7313
+ SkipCostComputation.contains (UI);
7314
+ }
7315
+
7316
+ InstructionCost LoopVectorizationPlanner::cost (VPlan &Plan,
7317
+ ElementCount VF) const {
7318
+ InstructionCost Cost = 0 ;
7319
+ LLVMContext &LLVMCtx = OrigLoop->getHeader ()->getContext ();
7320
+ VPCostContext CostCtx (CM.TTI , Legal->getWidestInductionType (), LLVMCtx, CM);
7321
+
7322
+ // Cost modeling for inductions is inaccurate in the legacy cost model
7323
+ // compared to the recipes that are generated. To match here initially during
7324
+ // VPlan cost model bring up directly use the induction costs from the legacy
7325
+ // cost model. Note that we do this as pre-processing; the VPlan may not have
7326
+ // any recipes associated with the original induction increment instruction
7327
+ // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
7328
+ // the cost of both induction increment instructions that are represented by
7329
+ // recipes and those that are not, to avoid distinguishing between them here,
7330
+ // and skip all recipes that represent induction increments (the former case)
7331
+ // later on, if they exist, to avoid counting them twice. Similarly we
7332
+ // pre-compute the cost of any optimized truncates.
7333
+ // TODO: Switch to more accurate costing based on VPlan.
7334
+ for (const auto &[IV, IndDesc] : Legal->getInductionVars ()) {
7335
+ Instruction *IVInc = cast<Instruction>(
7336
+ IV->getIncomingValueForBlock (OrigLoop->getLoopLatch ()));
7337
+ if (CostCtx.SkipCostComputation .insert (IVInc).second ) {
7338
+ InstructionCost InductionCost = CostCtx.getLegacyCost (IVInc, VF);
7339
+ LLVM_DEBUG ({
7340
+ dbgs () << " Cost of " << InductionCost << " for VF " << VF
7341
+ << " :\n induction increment " << *IVInc << " \n " ;
7342
+ IVInc->dump ();
7343
+ });
7344
+ Cost += InductionCost;
7345
+ }
7346
+ for (User *U : IV->users ()) {
7347
+ auto *CI = cast<Instruction>(U);
7348
+ if (!CostCtx.CM .isOptimizableIVTruncate (CI, VF))
7349
+ continue ;
7350
+ assert (!CostCtx.SkipCostComputation .contains (CI) &&
7351
+ " Same cast for multiple inductions?" );
7352
+ CostCtx.SkipCostComputation .insert (CI);
7353
+ InstructionCost CastCost = CostCtx.getLegacyCost (CI, VF);
7354
+ LLVM_DEBUG ({
7355
+ dbgs () << " Cost of " << CastCost << " for VF " << VF
7356
+ << " :\n induction cast " << *CI << " \n " ;
7357
+ CI->dump ();
7358
+ });
7359
+ Cost += CastCost;
7360
+ }
7361
+ }
7362
+
7363
+ // / Compute the cost of all exiting conditions of the loop using the legacy
7364
+ // / cost model. This is to match the legacy behavior, which adds the cost of
7365
+ // / all exit conditions. Note that this over-estimates the cost, as there will
7366
+ // / be a single condition to control the vector loop.
7367
+ SmallVector<BasicBlock *> Exiting;
7368
+ CM.TheLoop ->getExitingBlocks (Exiting);
7369
+ SetVector<Instruction *> ExitInstrs;
7370
+ // Collect all exit conditions.
7371
+ for (BasicBlock *EB : Exiting) {
7372
+ auto *Term = dyn_cast<BranchInst>(EB->getTerminator ());
7373
+ if (!Term)
7374
+ continue ;
7375
+ if (auto *CondI = dyn_cast<Instruction>(Term->getOperand (0 ))) {
7376
+ ExitInstrs.insert (CondI);
7377
+ }
7378
+ }
7379
+ // Compute the cost of all instructions only feeding the exit conditions.
7380
+ for (unsigned I = 0 ; I != ExitInstrs.size (); ++I) {
7381
+ Instruction *CondI = ExitInstrs[I];
7382
+ if (!OrigLoop->contains (CondI) ||
7383
+ !CostCtx.SkipCostComputation .insert (CondI).second )
7384
+ continue ;
7385
+ Cost += CostCtx.getLegacyCost (CondI, VF);
7386
+ for (Value *Op : CondI->operands ()) {
7387
+ auto *OpI = dyn_cast<Instruction>(Op);
7388
+ if (!OpI || any_of (OpI->users (), [&ExitInstrs](User *U) {
7389
+ return !ExitInstrs.contains (cast<Instruction>(U));
7390
+ }))
7391
+ continue ;
7392
+ ExitInstrs.insert (OpI);
7393
+ }
7394
+ }
7395
+
7396
+ // The legacy cost model has special logic to compute the cost of in-loop
7397
+ // reductions, which may be smaller than the sum of all instructions involved
7398
+ // in the reduction. For AnyOf reductions, VPlan codegen may remove the select
7399
+ // which the legacy cost model uses to assign cost. Pre-compute their costs
7400
+ // for now.
7401
+ // TODO: Switch to costing based on VPlan once the logic has been ported.
7402
+ for (const auto &[RedPhi, RdxDesc] : Legal->getReductionVars ()) {
7403
+ if (!CM.isInLoopReduction (RedPhi) &&
7404
+ !RecurrenceDescriptor::isAnyOfRecurrenceKind (
7405
+ RdxDesc.getRecurrenceKind ()))
7406
+ continue ;
7407
+
7408
+ // AnyOf reduction codegen may remove the select. To match the legacy cost
7409
+ // model, pre-compute the cost for AnyOf reductions here.
7410
+ if (RecurrenceDescriptor::isAnyOfRecurrenceKind (
7411
+ RdxDesc.getRecurrenceKind ())) {
7412
+ auto *Select = cast<SelectInst>(*find_if (
7413
+ RedPhi->users (), [](User *U) { return isa<SelectInst>(U); }));
7414
+ assert (!CostCtx.SkipCostComputation .contains (Select) &&
7415
+ " reduction op visited multiple times" );
7416
+ CostCtx.SkipCostComputation .insert (Select);
7417
+ auto ReductionCost = CostCtx.getLegacyCost (Select, VF);
7418
+ LLVM_DEBUG (dbgs () << " Cost of " << ReductionCost << " for VF " << VF
7419
+ << " :\n any-of reduction " << *Select << " \n " );
7420
+ Cost += ReductionCost;
7421
+ continue ;
7422
+ }
7423
+
7424
+ const auto &ChainOps = RdxDesc.getReductionOpChain (RedPhi, OrigLoop);
7425
+ SetVector<Instruction *> ChainOpsAndOperands (ChainOps.begin (),
7426
+ ChainOps.end ());
7427
+ // Also include the operands of instructions in the chain, as the cost-model
7428
+ // may mark extends as free.
7429
+ for (auto *ChainOp : ChainOps) {
7430
+ for (Value *Op : ChainOp->operands ()) {
7431
+ if (auto *I = dyn_cast<Instruction>(Op))
7432
+ ChainOpsAndOperands.insert (I);
7433
+ }
7434
+ }
7435
+
7436
+ // Pre-compute the cost for I, if it has a reduction pattern cost.
7437
+ for (Instruction *I : ChainOpsAndOperands) {
7438
+ auto ReductionCost = CM.getReductionPatternCost (
7439
+ I, VF, ToVectorTy (I->getType (), VF), TTI::TCK_RecipThroughput);
7440
+ if (!ReductionCost)
7441
+ continue ;
7442
+
7443
+ assert (!CostCtx.SkipCostComputation .contains (I) &&
7444
+ " reduction op visited multiple times" );
7445
+ CostCtx.SkipCostComputation .insert (I);
7446
+ LLVM_DEBUG (dbgs () << " Cost of " << ReductionCost << " for VF " << VF
7447
+ << " :\n in-loop reduction " << *I << " \n " );
7448
+ Cost += *ReductionCost;
7449
+ }
7450
+ }
7451
+
7452
+ // Now compute and add the VPlan-based cost.
7453
+ Cost += Plan.cost (VF, CostCtx);
7454
+ LLVM_DEBUG (dbgs () << " Cost for VF " << VF << " : " << Cost << " \n " );
7455
+ return Cost;
7456
+ }
7457
+
7458
+ VPlan &LoopVectorizationPlanner::getBestPlan () const {
7459
+ // If there is a single VPlan with a single VF, return it directly.
7460
+ VPlan &FirstPlan = *VPlans[0 ];
7461
+ if (VPlans.size () == 1 && size (FirstPlan.vectorFactors ()) == 1 )
7462
+ return FirstPlan;
7463
+
7464
+ VPlan *BestPlan = &FirstPlan;
7465
+ ElementCount ScalarVF = ElementCount::getFixed (1 );
7466
+ assert (hasPlanWithVF (ScalarVF) &&
7467
+ " More than a single plan/VF w/o any plan having scalar VF" );
7468
+
7469
+ InstructionCost ScalarCost = cost (getBestPlanFor (ScalarVF), ScalarVF);
7470
+ VectorizationFactor BestFactor (ScalarVF, ScalarCost, ScalarCost);
7471
+
7472
+ bool ForceVectorization = Hints.getForce () == LoopVectorizeHints::FK_Enabled;
7473
+ if (ForceVectorization) {
7474
+ // Ignore scalar width, because the user explicitly wants vectorization.
7475
+ // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7476
+ // evaluation.
7477
+ BestFactor.Cost = InstructionCost::getMax ();
7478
+ }
7479
+
7480
+ for (auto &P : VPlans) {
7481
+ for (ElementCount VF : P->vectorFactors ()) {
7482
+ if (VF.isScalar ())
7483
+ continue ;
7484
+ InstructionCost Cost = cost (*P, VF);
7485
+ VectorizationFactor CurrentFactor (VF, Cost, ScalarCost);
7486
+ if (isMoreProfitable (CurrentFactor, BestFactor)) {
7487
+ BestFactor = CurrentFactor;
7488
+ BestPlan = &*P;
7489
+ }
7490
+ }
7491
+ }
7492
+ BestPlan->setVF (BestFactor.Width );
7493
+ return *BestPlan;
7494
+ }
7495
+
7311
7496
VPlan &LoopVectorizationPlanner::getBestPlanFor (ElementCount VF) const {
7312
7497
assert (count_if (VPlans,
7313
7498
[VF](const VPlanPtr &Plan) { return Plan->hasVF (VF); }) ==
@@ -10166,8 +10351,15 @@ bool LoopVectorizePass::processLoop(Loop *L) {
10166
10351
VF.MinProfitableTripCount , IC, &LVL, &CM, BFI,
10167
10352
PSI, Checks);
10168
10353
10169
- VPlan &BestPlan = LVP.getBestPlanFor (VF.Width );
10170
- LVP.executePlan (VF.Width , IC, BestPlan, LB, DT, false );
10354
+ VPlan &BestPlan = LVP.getBestPlan ();
10355
+ assert (size (BestPlan.vectorFactors ()) == 1 &&
10356
+ " Plan should have a single VF" );
10357
+ ElementCount Width = *BestPlan.vectorFactors ().begin ();
10358
+ LLVM_DEBUG (dbgs () << " VF picked by VPlan cost model: " << Width
10359
+ << " \n " );
10360
+ assert (VF.Width == Width &&
10361
+ " VPlan cost model and legacy cost model disagreed" );
10362
+ LVP.executePlan (Width, IC, BestPlan, LB, DT, false );
10171
10363
++LoopsVectorized;
10172
10364
10173
10365
// Add metadata to disable runtime unrolling a scalar loop when there
0 commit comments