|
| 1 | +"""Implementation of GradientBoostingRegressor in sklearn using the |
| 2 | + boston dataset which is very popular for regression problem to |
| 3 | + predict house price. |
| 4 | +""" |
| 5 | + |
| 6 | +import pandas as pd |
| 7 | +import matplotlib.pyplot as plt |
| 8 | +from sklearn.datasets import load_boston |
| 9 | +from sklearn.metrics import mean_squared_error, r2_score |
| 10 | +from sklearn.ensemble import GradientBoostingRegressor |
| 11 | +from sklearn.model_selection import train_test_split |
| 12 | + |
| 13 | + |
| 14 | +def main(): |
| 15 | + |
| 16 | + # loading the dataset from the sklearn |
| 17 | + df = load_boston() |
| 18 | + print(df.keys()) |
| 19 | + # now let construct a data frame |
| 20 | + df_boston = pd.DataFrame(df.data, columns=df.feature_names) |
| 21 | + # let add the target to the dataframe |
| 22 | + df_boston["Price"] = df.target |
| 23 | + # print the first five rows using the head function |
| 24 | + print(df_boston.head()) |
| 25 | + # Summary statistics |
| 26 | + print(df_boston.describe().T) |
| 27 | + # Feature selection |
| 28 | + |
| 29 | + X = df_boston.iloc[:, :-1] |
| 30 | + y = df_boston.iloc[:, -1] # target variable |
| 31 | + # split the data with 75% train and 25% test sets. |
| 32 | + X_train, X_test, y_train, y_test = train_test_split( |
| 33 | + X, y, random_state=0, test_size=0.25 |
| 34 | + ) |
| 35 | + |
| 36 | + model = GradientBoostingRegressor( |
| 37 | + n_estimators=500, max_depth=5, min_samples_split=4, learning_rate=0.01 |
| 38 | + ) |
| 39 | + # training the model |
| 40 | + model.fit(X_train, y_train) |
| 41 | + # to see how good the model fit the data |
| 42 | + training_score = model.score(X_train, y_train).round(3) |
| 43 | + test_score = model.score(X_test, y_test).round(3) |
| 44 | + print("Training score of GradientBoosting is :", training_score) |
| 45 | + print( |
| 46 | + "The test score of GradientBoosting is :", |
| 47 | + test_score |
| 48 | + ) |
| 49 | + # Let us evaluation the model by finding the errors |
| 50 | + y_pred = model.predict(X_test) |
| 51 | + |
| 52 | + # The mean squared error |
| 53 | + print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) |
| 54 | + # Explained variance score: 1 is perfect prediction |
| 55 | + print("Test Variance score: %.2f" % r2_score(y_test, y_pred)) |
| 56 | + |
| 57 | + # So let's run the model against the test data |
| 58 | + fig, ax = plt.subplots() |
| 59 | + ax.scatter(y_test, y_pred, edgecolors=(0, 0, 0)) |
| 60 | + ax.plot([y_test.min(), y_test.max()], |
| 61 | + [y_test.min(), y_test.max()], "k--", lw=4) |
| 62 | + ax.set_xlabel("Actual") |
| 63 | + ax.set_ylabel("Predicted") |
| 64 | + ax.set_title("Truth vs Predicted") |
| 65 | + # this show function will display the plotting |
| 66 | + plt.show() |
| 67 | + |
| 68 | + |
| 69 | +if __name__ == "__main__": |
| 70 | + main() |
0 commit comments