Skip to content

Commit b7a7506

Browse files
darkstarstokhos
authored andcommitted
Add solution for Project Euler problem 188 (TheAlgorithms#2880)
* Project Euler problem 188 solution * fix superscript notation * split out modexpt() function, and rename parameters * Add some more doctest, and add type hints * Add some reference links * Update docstrings and mark helper function private * Fix doctests and remove/improve redundant comments * fix as per style guide
1 parent 15ae0d6 commit b7a7506

File tree

2 files changed

+68
-0
lines changed

2 files changed

+68
-0
lines changed

Diff for: project_euler/problem_188/__init__.py

Whitespace-only changes.

Diff for: project_euler/problem_188/sol1.py

+68
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,68 @@
1+
"""
2+
Project Euler Problem 188: https://projecteuler.net/problem=188
3+
4+
The hyperexponentiation of a number
5+
6+
The hyperexponentiation or tetration of a number a by a positive integer b,
7+
denoted by a↑↑b or b^a, is recursively defined by:
8+
9+
a↑↑1 = a,
10+
a↑↑(k+1) = a(a↑↑k).
11+
12+
Thus we have e.g. 3↑↑2 = 3^3 = 27, hence 3↑↑3 = 3^27 = 7625597484987 and
13+
3↑↑4 is roughly 103.6383346400240996*10^12.
14+
15+
Find the last 8 digits of 1777↑↑1855.
16+
17+
References:
18+
- https://en.wikipedia.org/wiki/Tetration
19+
"""
20+
21+
22+
# small helper function for modular exponentiation
23+
def _modexpt(base: int, exponent: int, modulo_value: int) -> int:
24+
"""
25+
Returns the modular exponentiation, that is the value
26+
of `base ** exponent % modulo_value`, without calculating
27+
the actual number.
28+
>>> _modexpt(2, 4, 10)
29+
6
30+
>>> _modexpt(2, 1024, 100)
31+
16
32+
>>> _modexpt(13, 65535, 7)
33+
6
34+
"""
35+
36+
if exponent == 1:
37+
return base
38+
if exponent % 2 == 0:
39+
x = _modexpt(base, exponent / 2, modulo_value) % modulo_value
40+
return (x * x) % modulo_value
41+
else:
42+
return (base * _modexpt(base, exponent - 1, modulo_value)) % modulo_value
43+
44+
45+
def solution(base: int = 1777, height: int = 1855, digits: int = 8) -> int:
46+
"""
47+
Returns the last 8 digits of the hyperexponentiation of base by
48+
height, i.e. the number base↑↑height:
49+
50+
>>> solution(base=3, height=2)
51+
27
52+
>>> solution(base=3, height=3)
53+
97484987
54+
>>> solution(base=123, height=456, digits=4)
55+
2547
56+
"""
57+
58+
# calculate base↑↑height by right-assiciative repeated modular
59+
# exponentiation
60+
result = base
61+
for i in range(1, height):
62+
result = _modexpt(base, result, 10 ** digits)
63+
64+
return result
65+
66+
67+
if __name__ == "__main__":
68+
print(f"{solution() = }")

0 commit comments

Comments
 (0)