|
| 1 | +#!/usr/bin/env python3 |
| 2 | +""" |
| 3 | +Deutsch-Josza Algorithm is one of the first examples of a quantum |
| 4 | +algorithm that is exponentially faster than any possible deterministic |
| 5 | +classical algorithm |
| 6 | +
|
| 7 | +Premise: |
| 8 | +We are given a hidden Boolean function f, |
| 9 | +which takes as input a string of bits, and returns either 0 or 1: |
| 10 | +
|
| 11 | +f({x0,x1,x2,...}) -> 0 or 1, where xn is 0 or 1 |
| 12 | + |
| 13 | +The property of the given Boolean function is that it is guaranteed to |
| 14 | +either be balanced or constant. A constant function returns all 0's |
| 15 | +or all 1's for any input, while a balanced function returns 0's for |
| 16 | +exactly half of all inputs and 1's for the other half. Our task is to |
| 17 | +determine whether the given function is balanced or constant. |
| 18 | +
|
| 19 | +References: |
| 20 | +- https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm |
| 21 | +- https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html |
| 22 | +""" |
| 23 | + |
| 24 | +import numpy as np |
| 25 | +import qiskit as q |
| 26 | + |
| 27 | + |
| 28 | +def dj_oracle(case: str, num_qubits: int) -> q.QuantumCircuit: |
| 29 | + """ |
| 30 | + Returns a Quantum Circuit for the Oracle function. |
| 31 | + The circuit returned can represent balanced or constant function, |
| 32 | + according to the arguments passed |
| 33 | + """ |
| 34 | + # This circuit has num_qubits+1 qubits: the size of the input, |
| 35 | + # plus one output qubit |
| 36 | + oracle_qc = q.QuantumCircuit(num_qubits + 1) |
| 37 | + |
| 38 | + # First, let's deal with the case in which oracle is balanced |
| 39 | + if case == "balanced": |
| 40 | + # First generate a random number that tells us which CNOTs to |
| 41 | + # wrap in X-gates: |
| 42 | + b = np.random.randint(1, 2 ** num_qubits) |
| 43 | + # Next, format 'b' as a binary string of length 'n', padded with zeros: |
| 44 | + b_str = format(b, f"0{num_qubits}b") |
| 45 | + # Next, we place the first X-gates. Each digit in our binary string |
| 46 | + # correspopnds to a qubit, if the digit is 0, we do nothing, if it's 1 |
| 47 | + # we apply an X-gate to that qubit: |
| 48 | + for index, bit in enumerate(b_str): |
| 49 | + if bit == "1": |
| 50 | + oracle_qc.x(index) |
| 51 | + # Do the controlled-NOT gates for each qubit, using the output qubit |
| 52 | + # as the target: |
| 53 | + for index in range(num_qubits): |
| 54 | + oracle_qc.cx(index, num_qubits) |
| 55 | + # Next, place the final X-gates |
| 56 | + for index, bit in enumerate(b_str): |
| 57 | + if bit == "1": |
| 58 | + oracle_qc.x(index) |
| 59 | + |
| 60 | + # Case in which oracle is constant |
| 61 | + if case == "constant": |
| 62 | + # First decide what the fixed output of the oracle will be |
| 63 | + # (either always 0 or always 1) |
| 64 | + output = np.random.randint(2) |
| 65 | + if output == 1: |
| 66 | + oracle_qc.x(num_qubits) |
| 67 | + |
| 68 | + oracle_gate = oracle_qc.to_gate() |
| 69 | + oracle_gate.name = "Oracle" # To show when we display the circuit |
| 70 | + return oracle_gate |
| 71 | + |
| 72 | + |
| 73 | +def dj_algorithm(oracle: q.QuantumCircuit, num_qubits: int) -> q.QuantumCircuit: |
| 74 | + """ |
| 75 | + Returns the complete Deustch-Jozsa Quantum Circuit, |
| 76 | + adding Input & Output registers and Hadamard & Measurement Gates, |
| 77 | + to the Oracle Circuit passed in arguments |
| 78 | + """ |
| 79 | + dj_circuit = q.QuantumCircuit(num_qubits + 1, num_qubits) |
| 80 | + # Set up the output qubit: |
| 81 | + dj_circuit.x(num_qubits) |
| 82 | + dj_circuit.h(num_qubits) |
| 83 | + # And set up the input register: |
| 84 | + for qubit in range(num_qubits): |
| 85 | + dj_circuit.h(qubit) |
| 86 | + # Let's append the oracle gate to our circuit: |
| 87 | + dj_circuit.append(oracle, range(num_qubits + 1)) |
| 88 | + # Finally, perform the H-gates again and measure: |
| 89 | + for qubit in range(num_qubits): |
| 90 | + dj_circuit.h(qubit) |
| 91 | + |
| 92 | + for i in range(num_qubits): |
| 93 | + dj_circuit.measure(i, i) |
| 94 | + |
| 95 | + return dj_circuit |
| 96 | + |
| 97 | + |
| 98 | +def deutsch_jozsa(case: str, num_qubits: int) -> q.result.counts.Counts: |
| 99 | + """ |
| 100 | + Main function that builds the circuit using other helper functions, |
| 101 | + runs the experiment 1000 times & returns the resultant qubit counts |
| 102 | + >>> deutsch_jozsa("constant", 3) |
| 103 | + {'000': 1000} |
| 104 | + >>> deutsch_jozsa("balanced", 3) |
| 105 | + {'111': 1000} |
| 106 | + """ |
| 107 | + # Use Aer's qasm_simulator |
| 108 | + simulator = q.Aer.get_backend("qasm_simulator") |
| 109 | + |
| 110 | + oracle_gate = dj_oracle(case, num_qubits) |
| 111 | + dj_circuit = dj_algorithm(oracle_gate, num_qubits) |
| 112 | + |
| 113 | + # Execute the circuit on the qasm simulator |
| 114 | + job = q.execute(dj_circuit, simulator, shots=1000) |
| 115 | + |
| 116 | + # Return the histogram data of the results of the experiment. |
| 117 | + return job.result().get_counts(dj_circuit) |
| 118 | + |
| 119 | + |
| 120 | +if __name__ == "__main__": |
| 121 | + print(f"Deutsch Jozsa - Constant Oracle: {deutsch_jozsa('constant', 3)}") |
| 122 | + print(f"Deutsch Jozsa - Balanced Oracle: {deutsch_jozsa('balanced', 3)}") |
0 commit comments