Skip to content

Commit 478ad07

Browse files
zakademicZeyad Zakycclauss
authored andcommitted
Linear algebra/power iteration (TheAlgorithms#2190)
* Initial commit of power iteration. * Added more documentation for power iteration and rayleigh quotient * Type hinting for rayleigh quotient * Changes after running black and flake8. * Added doctests, added unit tests. Removed Rayleigh quotient as it is not needed. * Update linear_algebra/src/power_iteration.py Changed convergence check line. Co-authored-by: Christian Clauss <[email protected]> * Update linear_algebra/src/power_iteration.py Named tests more clearly. Co-authored-by: Christian Clauss <[email protected]> * Changed naming in test function to be more clear. Changed naming in doctests to match function call. * Self running tests Co-authored-by: Zeyad Zaky <[email protected]> Co-authored-by: Christian Clauss <[email protected]>
1 parent af9542f commit 478ad07

File tree

1 file changed

+101
-0
lines changed

1 file changed

+101
-0
lines changed

Diff for: linear_algebra/src/power_iteration.py

+101
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,101 @@
1+
import numpy as np
2+
3+
4+
def power_iteration(
5+
input_matrix: np.array, vector: np.array, error_tol=1e-12, max_iterations=100
6+
) -> [float, np.array]:
7+
"""
8+
Power Iteration.
9+
Find the largest eignevalue and corresponding eigenvector
10+
of matrix input_matrix given a random vector in the same space.
11+
Will work so long as vector has component of largest eigenvector.
12+
input_matrix must be symmetric.
13+
14+
Input
15+
input_matrix: input matrix whose largest eigenvalue we will find.
16+
Numpy array. np.shape(input_matrix) == (N,N).
17+
vector: random initial vector in same space as matrix.
18+
Numpy array. np.shape(vector) == (N,) or (N,1)
19+
20+
Output
21+
largest_eigenvalue: largest eigenvalue of the matrix input_matrix.
22+
Float. Scalar.
23+
largest_eigenvector: eigenvector corresponding to largest_eigenvalue.
24+
Numpy array. np.shape(largest_eigenvector) == (N,) or (N,1).
25+
26+
>>> import numpy as np
27+
>>> input_matrix = np.array([
28+
... [41, 4, 20],
29+
... [ 4, 26, 30],
30+
... [20, 30, 50]
31+
... ])
32+
>>> vector = np.array([41,4,20])
33+
>>> power_iteration(input_matrix,vector)
34+
(79.66086378788381, array([0.44472726, 0.46209842, 0.76725662]))
35+
"""
36+
37+
# Ensure matrix is square.
38+
assert np.shape(input_matrix)[0] == np.shape(input_matrix)[1]
39+
# Ensure proper dimensionality.
40+
assert np.shape(input_matrix)[0] == np.shape(vector)[0]
41+
42+
# Set convergence to False. Will define convergence when we exceed max_iterations
43+
# or when we have small changes from one iteration to next.
44+
45+
convergence = False
46+
lamda_previous = 0
47+
iterations = 0
48+
error = 1e12
49+
50+
while not convergence:
51+
# Multiple matrix by the vector.
52+
w = np.dot(input_matrix, vector)
53+
# Normalize the resulting output vector.
54+
vector = w / np.linalg.norm(w)
55+
# Find rayleigh quotient
56+
# (faster than usual b/c we know vector is normalized already)
57+
lamda = np.dot(vector.T, np.dot(input_matrix, vector))
58+
59+
# Check convergence.
60+
error = np.abs(lamda - lamda_previous) / lamda
61+
iterations += 1
62+
63+
if error <= error_tol or iterations >= max_iterations:
64+
convergence = True
65+
66+
lamda_previous = lamda
67+
68+
return lamda, vector
69+
70+
71+
def test_power_iteration() -> None:
72+
"""
73+
>>> test_power_iteration() # self running tests
74+
"""
75+
# Our implementation.
76+
input_matrix = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]])
77+
vector = np.array([41, 4, 20])
78+
eigen_value, eigen_vector = power_iteration(input_matrix, vector)
79+
80+
# Numpy implementation.
81+
82+
# Get eigen values and eigen vectors using built in numpy
83+
# eigh (eigh used for symmetric or hermetian matrices).
84+
eigen_values, eigen_vectors = np.linalg.eigh(input_matrix)
85+
# Last eigen value is the maximum one.
86+
eigen_value_max = eigen_values[-1]
87+
# Last column in this matrix is eigen vector corresponding to largest eigen value.
88+
eigen_vector_max = eigen_vectors[:, -1]
89+
90+
# Check our implementation and numpy gives close answers.
91+
assert np.abs(eigen_value - eigen_value_max) <= 1e-6
92+
# Take absolute values element wise of each eigenvector.
93+
# as they are only unique to a minus sign.
94+
assert np.linalg.norm(np.abs(eigen_vector) - np.abs(eigen_vector_max)) <= 1e-6
95+
96+
97+
if __name__ == "__main__":
98+
import doctest
99+
100+
doctest.testmod()
101+
test_power_iteration()

0 commit comments

Comments
 (0)