|
| 1 | +""" |
| 2 | +Given a sorted array of integers, return indices of the two numbers such |
| 3 | +that they add up to a specific target using the two pointers technique. |
| 4 | +
|
| 5 | +You may assume that each input would have exactly one solution, and you |
| 6 | +may not use the same element twice. |
| 7 | +
|
| 8 | +This is an alternative solution of the two-sum problem, which uses a |
| 9 | +map to solve the problem. Hence can not solve the issue if there is a |
| 10 | +constraint not use the same index twice. [1] |
| 11 | +
|
| 12 | +Example: |
| 13 | +Given nums = [2, 7, 11, 15], target = 9, |
| 14 | +
|
| 15 | +Because nums[0] + nums[1] = 2 + 7 = 9, |
| 16 | +return [0, 1]. |
| 17 | +
|
| 18 | +[1]: https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py |
| 19 | +""" |
| 20 | +from __future__ import annotations |
| 21 | + |
| 22 | + |
| 23 | +def two_pointer(nums: list[int], target: int) -> list[int]: |
| 24 | + """ |
| 25 | + >>> two_pointer([2, 7, 11, 15], 9) |
| 26 | + [0, 1] |
| 27 | + >>> two_pointer([2, 7, 11, 15], 17) |
| 28 | + [0, 3] |
| 29 | + >>> two_pointer([2, 7, 11, 15], 18) |
| 30 | + [1, 2] |
| 31 | + >>> two_pointer([2, 7, 11, 15], 26) |
| 32 | + [2, 3] |
| 33 | + >>> two_pointer([1, 3, 3], 6) |
| 34 | + [1, 2] |
| 35 | + >>> two_pointer([2, 7, 11, 15], 8) |
| 36 | + [] |
| 37 | + >>> two_pointer([3 * i for i in range(10)], 19) |
| 38 | + [] |
| 39 | + >>> two_pointer([1, 2, 3], 6) |
| 40 | + [] |
| 41 | + """ |
| 42 | + i = 0 |
| 43 | + j = len(nums) - 1 |
| 44 | + |
| 45 | + while i < j: |
| 46 | + |
| 47 | + if nums[i] + nums[j] == target: |
| 48 | + return [i, j] |
| 49 | + elif nums[i] + nums[j] < target: |
| 50 | + i = i + 1 |
| 51 | + else: |
| 52 | + j = j - 1 |
| 53 | + |
| 54 | + return [] |
| 55 | + |
| 56 | + |
| 57 | +if __name__ == "__main__": |
| 58 | + import doctest |
| 59 | + |
| 60 | + doctest.testmod() |
| 61 | + print(f"{two_pointer([2, 7, 11, 15], 9) = }") |
0 commit comments