You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -351,7 +350,7 @@ keyword argument to ``'coerce'`` instead of ``True``, as in ``convert_dates='coe
351
350
's': ['apple','banana']})
352
351
df
353
352
354
-
The old usage of ``DataFrame.convert_objects`` used `'coerce'` along with the
353
+
The old usage of ``DataFrame.convert_objects`` used ``'coerce'`` along with the
355
354
type.
356
355
357
356
.. code-block:: python
@@ -366,8 +365,7 @@ Now the ``coerce`` keyword must be explicitly used.
366
365
367
366
In earlier versions of pandas, ``DataFrame.convert_objects`` would not coerce
368
367
numeric types when there were no values convertible to a numeric type. This returns
369
-
the original DataFrame with no conversion. This change alters
370
-
this behavior so that converts all non-number-like strings to ``NaN``.
368
+
the original DataFrame with no conversion.
371
369
372
370
.. code-block:: python
373
371
@@ -378,6 +376,9 @@ this behavior so that converts all non-number-like strings to ``NaN``.
378
376
0 a
379
377
1 b
380
378
379
+
THe new behavior will convert all non-number-like strings to ``NaN``,
380
+
when ``coerce=True`` is passed explicity.
381
+
381
382
.. ipython:: python
382
383
383
384
pd.DataFrame({'s': ['a','b']})
@@ -517,7 +518,10 @@ New behavior:
517
518
518
519
.. ipython:: python
519
520
520
-
df_with_missing.to_hdf('file.h5', 'df_with_missing', format = 'table', mode='w')
521
+
df_with_missing.to_hdf('file.h5',
522
+
'df_with_missing',
523
+
format='table',
524
+
mode='w')
521
525
522
526
pd.read_hdf('file.h5', 'df_with_missing')
523
527
@@ -571,10 +575,10 @@ from ``7``.
571
575
Changes to ``Categorical.unique``
572
576
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
573
577
574
-
``Categorical.unique`` now returns new ``Categorical`` which ``categories`` and ``codes`` that are unique, rather than returning ``np.array`` (:issue:`10508`)
578
+
``Categorical.unique`` now returns new ``Categoricals`` with ``categories`` and ``codes`` that are unique, rather than returning ``np.array`` (:issue:`10508`)
575
579
576
580
- unordered category: values and categories are sorted by appearance order.
577
-
- ordered category: values are sorted by appearance order, categories keeps existing order.
581
+
- ordered category: values are sorted by appearance order, categories keep existing order.
578
582
579
583
.. ipython :: python
580
584
@@ -597,25 +601,23 @@ Other API Changes
597
601
598
602
- Line and kde plot with ``subplots=True`` now uses default colors, not all black. Specify ``color='k'`` to draw all lines in black (:issue:`9894`)
599
603
- Calling the ``.value_counts`` method on a Series with ``categorical`` dtype now returns a Series with a ``CategoricalIndex`` (:issue:`10704`)
600
-
- Enable writing Excel files in :ref:`memory <_io.excel_writing_buffer>` using StringIO/BytesIO (:issue:`7074`)
601
-
- Enable serialization of lists and dicts to strings in ExcelWriter (:issue:`8188`)
602
604
- Allow passing `kwargs` to the interpolation methods (:issue:`10378`).
603
-
- Serialize metadata properties of subclasses of pandas objects (:issue:`10553`).
605
+
- The metadata properties of subclasses of pandas objects will now be serialized (:issue:`10553`).
604
606
- Allow ``DataFrame`` with ``MultiIndex`` columns to be written to Excel (:issue:`10564`). This was changed in 0.16.2 as the read-back method could not always guarantee perfect fidelity (:issue:`9794`).
605
607
- ``groupby`` using ``Categorical`` follows the same rule as ``Categorical.unique`` described above (:issue:`10508`)
608
+
- Improved error message when concatenating an empty iterable of dataframes (:issue:`9157`)
609
+
606
610
- ``NaT``'s methods now either raise ``ValueError``, or return ``np.nan`` or ``NaT`` (:issue:`9513`)
0 commit comments