forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharray.py
663 lines (546 loc) · 20.2 KB
/
array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
"""
SparseArray data structure
"""
from __future__ import division
# pylint: disable=E1101,E1103,W0231
from numpy import nan, ndarray
import numpy as np
import pandas as pd
from pandas.core.base import PandasObject
from pandas import compat, lib
from pandas.compat import range
from pandas.compat.numpy import function as nv
from pandas.types.generic import ABCSparseArray, ABCSparseSeries
from pandas.types.common import (is_float, is_integer,
is_integer_dtype, _ensure_platform_int,
is_list_like,
is_scalar)
from pandas.types.cast import _possibly_convert_platform
from pandas.types.missing import isnull, notnull
from pandas._sparse import SparseIndex, BlockIndex, IntIndex
import pandas._sparse as splib
import pandas.index as _index
import pandas.core.algorithms as algos
import pandas.core.ops as ops
import pandas.formats.printing as printing
from pandas.util.decorators import Appender
from pandas.indexes.base import _index_shared_docs
_sparray_doc_kwargs = dict(klass='SparseArray')
def _arith_method(op, name, str_rep=None, default_axis=None, fill_zeros=None,
**eval_kwargs):
"""
Wrapper function for Series arithmetic operations, to avoid
code duplication.
"""
def wrapper(self, other):
if isinstance(other, np.ndarray):
if len(self) != len(other):
raise AssertionError("length mismatch: %d vs. %d" %
(len(self), len(other)))
if not isinstance(other, ABCSparseArray):
other = SparseArray(other, fill_value=self.fill_value)
if name[0] == 'r':
return _sparse_array_op(other, self, op, name[1:])
else:
return _sparse_array_op(self, other, op, name)
elif is_scalar(other):
new_fill_value = op(np.float64(self.fill_value), np.float64(other))
return _wrap_result(name, op(self.sp_values, other),
self.sp_index, new_fill_value)
else: # pragma: no cover
raise TypeError('operation with %s not supported' % type(other))
if name.startswith("__"):
name = name[2:-2]
wrapper.__name__ = name
return wrapper
def _sparse_array_op(left, right, op, name):
if left.sp_index.equals(right.sp_index):
result = op(left.sp_values, right.sp_values)
result_index = left.sp_index
else:
sparse_op = getattr(splib, 'sparse_%s' % name)
result, result_index = sparse_op(left.sp_values, left.sp_index,
left.fill_value, right.sp_values,
right.sp_index, right.fill_value)
try:
fill_value = op(left.fill_value, right.fill_value)
except:
fill_value = nan
return _wrap_result(name, result, result_index, fill_value)
def _wrap_result(name, data, sparse_index, fill_value):
""" wrap op result to have correct dtype """
if name in ('eq', 'ne', 'lt', 'gt', 'le', 'ge'):
# ToDo: We can remove this condition when removing
# SparseArray's dtype default when closing GH 667
return SparseArray(data, sparse_index=sparse_index,
fill_value=fill_value,
dtype=np.bool)
else:
return SparseArray(data, sparse_index=sparse_index,
fill_value=fill_value)
class SparseArray(PandasObject, np.ndarray):
"""Data structure for labeled, sparse floating point 1-D data
Parameters
----------
data : {array-like (1-D), Series, SparseSeries, dict}
kind : {'block', 'integer'}
fill_value : float
Defaults to NaN (code for missing)
sparse_index : {BlockIndex, IntIndex}, optional
Only if you have one. Mainly used internally
Notes
-----
SparseArray objects are immutable via the typical Python means. If you
must change values, convert to dense, make your changes, then convert back
to sparse
"""
__array_priority__ = 15
_typ = 'array'
_subtyp = 'sparse_array'
sp_index = None
fill_value = None
def __new__(cls, data, sparse_index=None, index=None, kind='integer',
fill_value=None, dtype=np.float64, copy=False):
if index is not None:
if data is None:
data = np.nan
if not is_scalar(data):
raise Exception("must only pass scalars with an index ")
values = np.empty(len(index), dtype='float64')
values.fill(data)
data = values
if dtype is not None:
dtype = np.dtype(dtype)
is_sparse_array = isinstance(data, SparseArray)
if fill_value is None:
if is_sparse_array:
fill_value = data.fill_value
else:
fill_value = nan
if is_sparse_array:
sparse_index = data.sp_index
values = np.asarray(data)
else:
# array-like
if sparse_index is None:
values, sparse_index = make_sparse(data, kind=kind,
fill_value=fill_value)
else:
values = _sanitize_values(data)
if len(values) != sparse_index.npoints:
raise AssertionError("Non array-like type {0} must have"
" the same length as the"
" index".format(type(values)))
# Create array, do *not* copy data by default
if copy:
try:
# ToDo: Can remove this error handling when we actually
# support other dtypes
subarr = np.array(values, dtype=dtype, copy=True)
except ValueError:
subarr = np.array(values, copy=True)
else:
try:
subarr = np.asarray(values, dtype=dtype)
except ValueError:
subarr = np.asarray(values)
# if we have a bool type, make sure that we have a bool fill_value
if ((dtype is not None and issubclass(dtype.type, np.bool_)) or
(data is not None and lib.is_bool_array(subarr))):
if np.isnan(fill_value) or not fill_value:
fill_value = False
else:
fill_value = bool(fill_value)
# Change the class of the array to be the subclass type.
return cls._simple_new(subarr, sparse_index, fill_value)
@classmethod
def _simple_new(cls, data, sp_index, fill_value):
if (is_integer_dtype(data) and is_float(fill_value) and
sp_index.ngaps > 0):
# if float fill_value is being included in dense repr,
# convert values to float
data = data.astype(float)
result = data.view(cls)
if not isinstance(sp_index, SparseIndex):
# caller must pass SparseIndex
raise ValueError('sp_index must be a SparseIndex')
result.sp_index = sp_index
result.fill_value = fill_value
return result
@property
def _constructor(self):
return lambda x: SparseArray(x, fill_value=self.fill_value,
kind=self.kind)
@property
def kind(self):
if isinstance(self.sp_index, BlockIndex):
return 'block'
elif isinstance(self.sp_index, IntIndex):
return 'integer'
def __array_finalize__(self, obj):
"""
Gets called after any ufunc or other array operations, necessary
to pass on the index.
"""
self.sp_index = getattr(obj, 'sp_index', None)
self.fill_value = getattr(obj, 'fill_value', None)
def __reduce__(self):
"""Necessary for making this object picklable"""
object_state = list(ndarray.__reduce__(self))
subclass_state = self.fill_value, self.sp_index
object_state[2] = (object_state[2], subclass_state)
return tuple(object_state)
def __setstate__(self, state):
"""Necessary for making this object picklable"""
nd_state, own_state = state
ndarray.__setstate__(self, nd_state)
fill_value, sp_index = own_state[:2]
self.sp_index = sp_index
self.fill_value = fill_value
def __len__(self):
try:
return self.sp_index.length
except:
return 0
def __unicode__(self):
return '%s\nFill: %s\n%s' % (printing.pprint_thing(self),
printing.pprint_thing(self.fill_value),
printing.pprint_thing(self.sp_index))
def disable(self, other):
raise NotImplementedError('inplace binary ops not supported')
# Inplace operators
__iadd__ = disable
__isub__ = disable
__imul__ = disable
__itruediv__ = disable
__ifloordiv__ = disable
__ipow__ = disable
# Python 2 division operators
if not compat.PY3:
__idiv__ = disable
@property
def values(self):
"""
Dense values
"""
output = np.empty(len(self), dtype=self.dtype)
int_index = self.sp_index.to_int_index()
output.fill(self.fill_value)
output.put(int_index.indices, self)
return output
@property
def sp_values(self):
# caching not an option, leaks memory
return self.view(np.ndarray)
def get_values(self, fill=None):
""" return a dense representation """
return self.to_dense(fill=fill)
def to_dense(self, fill=None):
"""
Convert SparseSeries to (dense) Series
"""
return self.values
def __iter__(self):
for i in range(len(self)):
yield self._get_val_at(i)
def __getitem__(self, key):
"""
"""
if is_integer(key):
return self._get_val_at(key)
elif isinstance(key, tuple):
data_slice = self.values[key]
else:
if isinstance(key, SparseArray):
key = np.asarray(key)
if hasattr(key, '__len__') and len(self) != len(key):
return self.take(key)
else:
data_slice = self.values[key]
return self._constructor(data_slice)
def __getslice__(self, i, j):
if i < 0:
i = 0
if j < 0:
j = 0
slobj = slice(i, j)
return self.__getitem__(slobj)
def _get_val_at(self, loc):
n = len(self)
if loc < 0:
loc += n
if loc >= n or loc < 0:
raise IndexError('Out of bounds access')
sp_loc = self.sp_index.lookup(loc)
if sp_loc == -1:
return self.fill_value
else:
return _index.get_value_at(self, sp_loc)
@Appender(_index_shared_docs['take'] % _sparray_doc_kwargs)
def take(self, indices, axis=0, allow_fill=True,
fill_value=None, **kwargs):
"""
Sparse-compatible version of ndarray.take
Returns
-------
taken : ndarray
"""
nv.validate_take(tuple(), kwargs)
if axis:
raise ValueError("axis must be 0, input was {0}".format(axis))
if is_integer(indices):
# return scalar
return self[indices]
indices = _ensure_platform_int(indices)
n = len(self)
if allow_fill and fill_value is not None:
# allow -1 to indicate self.fill_value,
# self.fill_value may not be NaN
if (indices < -1).any():
msg = ('When allow_fill=True and fill_value is not None, '
'all indices must be >= -1')
raise ValueError(msg)
elif (n <= indices).any():
msg = 'index is out of bounds for size {0}'
raise IndexError(msg.format(n))
else:
if ((indices < -n) | (n <= indices)).any():
msg = 'index is out of bounds for size {0}'
raise IndexError(msg.format(n))
indices = indices.astype(np.int32)
if not (allow_fill and fill_value is not None):
indices = indices.copy()
indices[indices < 0] += n
locs = self.sp_index.lookup_array(indices)
indexer = np.arange(len(locs), dtype=np.int32)
mask = locs != -1
if mask.any():
indexer = indexer[mask]
new_values = self.sp_values.take(locs[mask])
else:
indexer = np.empty(shape=(0, ), dtype=np.int32)
new_values = np.empty(shape=(0, ), dtype=self.sp_values.dtype)
sp_index = _make_index(len(indices), indexer, kind=self.sp_index)
return self._simple_new(new_values, sp_index, self.fill_value)
def __setitem__(self, key, value):
# if is_integer(key):
# self.values[key] = value
# else:
# raise Exception("SparseArray does not support seting non-scalars
# via setitem")
raise TypeError(
"SparseArray does not support item assignment via setitem")
def __setslice__(self, i, j, value):
if i < 0:
i = 0
if j < 0:
j = 0
slobj = slice(i, j) # noqa
# if not is_scalar(value):
# raise Exception("SparseArray does not support seting non-scalars
# via slices")
# x = self.values
# x[slobj] = value
# self.values = x
raise TypeError("SparseArray does not support item assignment via "
"slices")
def astype(self, dtype=None):
"""
"""
dtype = np.dtype(dtype)
if dtype is not None and dtype not in (np.float_, float):
raise TypeError('Can only support floating point data for now')
return self.copy()
def copy(self, deep=True):
"""
Make a copy of the SparseSeries. Only the actual sparse values need to
be copied
"""
if deep:
values = self.sp_values.copy()
else:
values = self.sp_values
return SparseArray(values, sparse_index=self.sp_index,
dtype=self.dtype, fill_value=self.fill_value)
def count(self):
"""
Compute sum of non-NA/null observations in SparseSeries. If the
fill_value is not NaN, the "sparse" locations will be included in the
observation count
Returns
-------
nobs : int
"""
sp_values = self.sp_values
valid_spvals = np.isfinite(sp_values).sum()
if self._null_fill_value:
return valid_spvals
else:
return valid_spvals + self.sp_index.ngaps
@property
def _null_fill_value(self):
return isnull(self.fill_value)
@property
def _valid_sp_values(self):
sp_vals = self.sp_values
mask = notnull(sp_vals)
return sp_vals[mask]
@Appender(_index_shared_docs['fillna'] % _sparray_doc_kwargs)
def fillna(self, value, downcast=None):
if downcast is not None:
raise NotImplementedError
if issubclass(self.dtype.type, np.floating):
value = float(value)
if self._null_fill_value:
return self._simple_new(self.sp_values, self.sp_index,
fill_value=value)
else:
new_values = self.sp_values.copy()
new_values[isnull(new_values)] = value
return self._simple_new(new_values, self.sp_index,
fill_value=self.fill_value)
def sum(self, axis=0, *args, **kwargs):
"""
Sum of non-NA/null values
Returns
-------
sum : float
"""
nv.validate_sum(args, kwargs)
valid_vals = self._valid_sp_values
sp_sum = valid_vals.sum()
if self._null_fill_value:
return sp_sum
else:
nsparse = self.sp_index.ngaps
return sp_sum + self.fill_value * nsparse
def cumsum(self, axis=0, *args, **kwargs):
"""
Cumulative sum of values. Preserves locations of NaN values
Returns
-------
cumsum : Series
"""
nv.validate_cumsum(args, kwargs)
# TODO: gh-12855 - return a SparseArray here
if notnull(self.fill_value):
return self.to_dense().cumsum()
# TODO: what if sp_values contains NaN??
return SparseArray(self.sp_values.cumsum(), sparse_index=self.sp_index,
fill_value=self.fill_value)
def mean(self, axis=0, *args, **kwargs):
"""
Mean of non-NA/null values
Returns
-------
mean : float
"""
nv.validate_mean(args, kwargs)
valid_vals = self._valid_sp_values
sp_sum = valid_vals.sum()
ct = len(valid_vals)
if self._null_fill_value:
return sp_sum / ct
else:
nsparse = self.sp_index.ngaps
return (sp_sum + self.fill_value * nsparse) / (ct + nsparse)
def value_counts(self, dropna=True):
"""
Returns a Series containing counts of unique values.
Parameters
----------
dropna : boolean, default True
Don't include counts of NaN, even if NaN is in sp_values.
Returns
-------
counts : Series
"""
keys, counts = algos._value_counts_arraylike(self.sp_values,
dropna=dropna)
fcounts = self.sp_index.ngaps
if fcounts > 0:
if self._null_fill_value and dropna:
pass
else:
if self._null_fill_value:
mask = pd.isnull(keys)
else:
mask = keys == self.fill_value
if mask.any():
counts[mask] += fcounts
else:
keys = np.insert(keys, 0, self.fill_value)
counts = np.insert(counts, 0, fcounts)
if not isinstance(keys, pd.Index):
keys = pd.Index(keys)
result = pd.Series(counts, index=keys)
return result
def _maybe_to_dense(obj):
""" try to convert to dense """
if hasattr(obj, 'to_dense'):
return obj.to_dense()
return obj
def _maybe_to_sparse(array):
""" array must be SparseSeries or SparseArray """
if isinstance(array, ABCSparseSeries):
array = array.values.copy()
return array
def _sanitize_values(arr):
"""
return an ndarray for our input,
in a platform independent manner
"""
if hasattr(arr, 'values'):
arr = arr.values
else:
# scalar
if is_scalar(arr):
arr = [arr]
# ndarray
if isinstance(arr, np.ndarray):
pass
elif is_list_like(arr) and len(arr) > 0:
arr = _possibly_convert_platform(arr)
else:
arr = np.asarray(arr)
return arr
def make_sparse(arr, kind='block', fill_value=nan):
"""
Convert ndarray to sparse format
Parameters
----------
arr : ndarray
kind : {'block', 'integer'}
fill_value : NaN or another value
Returns
-------
(sparse_values, index) : (ndarray, SparseIndex)
"""
arr = _sanitize_values(arr)
if arr.ndim > 1:
raise TypeError("expected dimension <= 1 data")
if isnull(fill_value):
mask = notnull(arr)
else:
mask = arr != fill_value
length = len(arr)
if length != mask.size:
# the arr is a SparseArray
indices = mask.sp_index.indices
else:
indices = np.arange(length, dtype=np.int32)[mask]
index = _make_index(length, indices, kind)
sparsified_values = arr[mask]
return sparsified_values, index
def _make_index(length, indices, kind):
if kind == 'block' or isinstance(kind, BlockIndex):
locs, lens = splib.get_blocks(indices)
index = BlockIndex(length, locs, lens)
elif kind == 'integer' or isinstance(kind, IntIndex):
index = IntIndex(length, indices)
else: # pragma: no cover
raise ValueError('must be block or integer type')
return index
ops.add_special_arithmetic_methods(SparseArray, arith_method=_arith_method,
comp_method=_arith_method,
use_numexpr=False)