forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsparse.py
94 lines (67 loc) · 3.23 KB
/
sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from .pandas_vb_common import *
import pandas.sparse.series
import scipy.sparse
from pandas.core.sparse import SparseSeries, SparseDataFrame
from pandas.core.sparse import SparseDataFrame
class sparse_series_to_frame(object):
goal_time = 0.2
def setup(self):
self.K = 50
self.N = 50000
self.rng = np.asarray(date_range('1/1/2000', periods=self.N, freq='T'))
self.series = {}
for i in range(1, (self.K + 1)):
self.data = np.random.randn(self.N)[:(- i)]
self.this_rng = self.rng[:(- i)]
self.data[100:] = np.nan
self.series[i] = SparseSeries(self.data, index=self.this_rng)
def time_sparse_series_to_frame(self):
SparseDataFrame(self.series)
class sparse_frame_constructor(object):
goal_time = 0.2
def time_sparse_frame_constructor(self):
SparseDataFrame(columns=np.arange(100), index=np.arange(1000))
class sparse_series_from_coo(object):
goal_time = 0.2
def setup(self):
self.A = scipy.sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(100, 100))
def time_sparse_series_from_coo(self):
self.ss = pandas.sparse.series.SparseSeries.from_coo(self.A)
class sparse_series_to_coo(object):
goal_time = 0.2
def setup(self):
self.s = pd.Series(([np.nan] * 10000))
self.s[0] = 3.0
self.s[100] = (-1.0)
self.s[999] = 12.1
self.s.index = pd.MultiIndex.from_product((range(10), range(10), range(10), range(10)))
self.ss = self.s.to_sparse()
def time_sparse_series_to_coo(self):
self.ss.to_coo(row_levels=[0, 1], column_levels=[2, 3], sort_labels=True)
class sparse_arithmetic(object):
goal_time = 0.2
def setup(self):
np.random.seed(1)
self.a_10percent = self.make_sparse_array(length=1000000, dense_size=100000, fill_value=np.nan)
self.b_10percent = self.make_sparse_array(length=1000000, dense_size=100000, fill_value=np.nan)
self.a_10percent_zero = self.make_sparse_array(length=1000000, dense_size=100000, fill_value=0)
self.b_10percent_zero = self.make_sparse_array(length=1000000, dense_size=100000, fill_value=0)
self.a_1percent = self.make_sparse_array(length=1000000, dense_size=10000, fill_value=np.nan)
self.b_1percent = self.make_sparse_array(length=1000000, dense_size=10000, fill_value=np.nan)
def make_sparse_array(self, length, dense_size, fill_value):
arr = np.array([fill_value] * length, dtype=np.float64)
indexer = np.unique(np.random.randint(0, length, dense_size))
arr[indexer] = np.random.randint(0, 100, len(indexer))
return pd.SparseArray(arr, fill_value=fill_value)
def time_sparse_addition_10percent(self):
self.a_10percent + self.b_10percent
def time_sparse_addition_10percent_zero(self):
self.a_10percent_zero + self.b_10percent_zero
def time_sparse_addition_1percent(self):
self.a_1percent + self.b_1percent
def time_sparse_division_10percent(self):
self.a_10percent / self.b_10percent
def time_sparse_division_10percent_zero(self):
self.a_10percent_zero / self.b_10percent_zero
def time_sparse_division_1percent(self):
self.a_1percent / self.b_1percent