forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pandas.py
686 lines (565 loc) · 27.2 KB
/
test_pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
# pylint: disable-msg=W0612,E1101
from pandas.compat import range, lrange, StringIO, OrderedDict
from pandas import compat
import os
import numpy as np
from pandas import Series, DataFrame, DatetimeIndex, Timestamp
from datetime import timedelta
import pandas as pd
read_json = pd.read_json
from pandas.util.testing import (assert_almost_equal, assert_frame_equal,
assert_series_equal, network,
ensure_clean, assert_index_equal)
import pandas.util.testing as tm
_seriesd = tm.getSeriesData()
_tsd = tm.getTimeSeriesData()
_frame = DataFrame(_seriesd)
_frame2 = DataFrame(_seriesd, columns=['D', 'C', 'B', 'A'])
_intframe = DataFrame(dict((k, v.astype(np.int64))
for k, v in compat.iteritems(_seriesd)))
_tsframe = DataFrame(_tsd)
_mixed_frame = _frame.copy()
class TestPandasContainer(tm.TestCase):
def setUp(self):
self.dirpath = tm.get_data_path()
self.ts = tm.makeTimeSeries()
self.ts.name = 'ts'
self.series = tm.makeStringSeries()
self.series.name = 'series'
self.objSeries = tm.makeObjectSeries()
self.objSeries.name = 'objects'
self.empty_series = Series([], index=[])
self.empty_frame = DataFrame({})
self.frame = _frame.copy()
self.frame2 = _frame2.copy()
self.intframe = _intframe.copy()
self.tsframe = _tsframe.copy()
self.mixed_frame = _mixed_frame.copy()
def tearDown(self):
del self.dirpath
del self.ts
del self.series
del self.objSeries
del self.empty_series
del self.empty_frame
del self.frame
del self.frame2
del self.intframe
del self.tsframe
del self.mixed_frame
def test_frame_double_encoded_labels(self):
df = DataFrame([['a', 'b'], ['c', 'd']],
index=['index " 1', 'index / 2'],
columns=['a \\ b', 'y / z'])
assert_frame_equal(df, read_json(df.to_json(orient='split'),
orient='split'))
assert_frame_equal(df, read_json(df.to_json(orient='columns'),
orient='columns'))
assert_frame_equal(df, read_json(df.to_json(orient='index'),
orient='index'))
df_unser = read_json(df.to_json(orient='records'), orient='records')
assert_index_equal(df.columns, df_unser.columns)
np.testing.assert_equal(df.values, df_unser.values)
def test_frame_non_unique_index(self):
df = DataFrame([['a', 'b'], ['c', 'd']], index=[1, 1],
columns=['x', 'y'])
self.assertRaises(ValueError, df.to_json, orient='index')
self.assertRaises(ValueError, df.to_json, orient='columns')
assert_frame_equal(df, read_json(df.to_json(orient='split'),
orient='split'))
unser = read_json(df.to_json(orient='records'), orient='records')
self.assertTrue(df.columns.equals(unser.columns))
np.testing.assert_equal(df.values, unser.values)
unser = read_json(df.to_json(orient='values'), orient='values')
np.testing.assert_equal(df.values, unser.values)
def test_frame_non_unique_columns(self):
df = DataFrame([['a', 'b'], ['c', 'd']], index=[1, 2],
columns=['x', 'x'])
self.assertRaises(ValueError, df.to_json, orient='index')
self.assertRaises(ValueError, df.to_json, orient='columns')
self.assertRaises(ValueError, df.to_json, orient='records')
assert_frame_equal(df, read_json(df.to_json(orient='split'),
orient='split', dtype=False))
unser = read_json(df.to_json(orient='values'), orient='values')
np.testing.assert_equal(df.values, unser.values)
# GH4377; duplicate columns not processing correctly
df = DataFrame([['a','b'],['c','d']], index=[1,2], columns=['x','y'])
result = read_json(df.to_json(orient='split'), orient='split')
assert_frame_equal(result, df)
def _check(df):
result = read_json(df.to_json(orient='split'), orient='split',
convert_dates=['x'])
assert_frame_equal(result, df)
for o in [[['a','b'],['c','d']],
[[1.5,2.5],[3.5,4.5]],
[[1,2.5],[3,4.5]],
[[Timestamp('20130101'),3.5],[Timestamp('20130102'),4.5]]]:
_check(DataFrame(o, index=[1,2], columns=['x','x']))
def test_frame_from_json_to_json(self):
def _check_orient(df, orient, dtype=None, numpy=False,
convert_axes=True, check_dtype=True, raise_ok=None):
df = df.sort()
dfjson = df.to_json(orient=orient)
try:
unser = read_json(dfjson, orient=orient, dtype=dtype,
numpy=numpy, convert_axes=convert_axes)
except Exception as detail:
if raise_ok is not None:
if isinstance(detail, raise_ok):
return
raise
unser = unser.sort()
if dtype is False:
check_dtype=False
if not convert_axes and df.index.dtype.type == np.datetime64:
unser.index = DatetimeIndex(
unser.index.values.astype('i8') * 1e6)
if orient == "records":
# index is not captured in this orientation
assert_almost_equal(df.values, unser.values)
self.assertTrue(df.columns.equals(unser.columns))
elif orient == "values":
# index and cols are not captured in this orientation
assert_almost_equal(df.values, unser.values)
elif orient == "split":
# index and col labels might not be strings
unser.index = [str(i) for i in unser.index]
unser.columns = [str(i) for i in unser.columns]
unser = unser.sort()
assert_almost_equal(df.values, unser.values)
else:
if convert_axes:
assert_frame_equal(df, unser, check_dtype=check_dtype)
else:
assert_frame_equal(df, unser, check_less_precise=False,
check_dtype=check_dtype)
def _check_all_orients(df, dtype=None, convert_axes=True, raise_ok=None):
# numpy=False
if convert_axes:
_check_orient(df, "columns", dtype=dtype)
_check_orient(df, "records", dtype=dtype)
_check_orient(df, "split", dtype=dtype)
_check_orient(df, "index", dtype=dtype)
_check_orient(df, "values", dtype=dtype)
_check_orient(df, "columns", dtype=dtype, convert_axes=False)
_check_orient(df, "records", dtype=dtype, convert_axes=False)
_check_orient(df, "split", dtype=dtype, convert_axes=False)
_check_orient(df, "index", dtype=dtype, convert_axes=False)
_check_orient(df, "values", dtype=dtype ,convert_axes=False)
# numpy=True and raise_ok might be not None, so ignore the error
if convert_axes:
_check_orient(df, "columns", dtype=dtype, numpy=True,
raise_ok=raise_ok)
_check_orient(df, "records", dtype=dtype, numpy=True,
raise_ok=raise_ok)
_check_orient(df, "split", dtype=dtype, numpy=True,
raise_ok=raise_ok)
_check_orient(df, "index", dtype=dtype, numpy=True,
raise_ok=raise_ok)
_check_orient(df, "values", dtype=dtype, numpy=True,
raise_ok=raise_ok)
_check_orient(df, "columns", dtype=dtype, numpy=True,
convert_axes=False, raise_ok=raise_ok)
_check_orient(df, "records", dtype=dtype, numpy=True,
convert_axes=False, raise_ok=raise_ok)
_check_orient(df, "split", dtype=dtype, numpy=True,
convert_axes=False, raise_ok=raise_ok)
_check_orient(df, "index", dtype=dtype, numpy=True,
convert_axes=False, raise_ok=raise_ok)
_check_orient(df, "values", dtype=dtype, numpy=True,
convert_axes=False, raise_ok=raise_ok)
# basic
_check_all_orients(self.frame)
self.assertEqual(self.frame.to_json(),
self.frame.to_json(orient="columns"))
_check_all_orients(self.intframe, dtype=self.intframe.values.dtype)
_check_all_orients(self.intframe, dtype=False)
# big one
# index and columns are strings as all unserialised JSON object keys
# are assumed to be strings
biggie = DataFrame(np.zeros((200, 4)),
columns=[str(i) for i in range(4)],
index=[str(i) for i in range(200)])
_check_all_orients(biggie,dtype=False,convert_axes=False)
# dtypes
_check_all_orients(DataFrame(biggie, dtype=np.float64),
dtype=np.float64, convert_axes=False)
_check_all_orients(DataFrame(biggie, dtype=np.int), dtype=np.int,
convert_axes=False)
_check_all_orients(DataFrame(biggie, dtype='U3'), dtype='U3',
convert_axes=False, raise_ok=ValueError)
# empty
_check_all_orients(self.empty_frame)
# time series data
_check_all_orients(self.tsframe)
# mixed data
index = pd.Index(['a', 'b', 'c', 'd', 'e'])
data = {
'A': [0., 1., 2., 3., 4.],
'B': [0., 1., 0., 1., 0.],
'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'],
'D': [True, False, True, False, True]
}
df = DataFrame(data=data, index=index)
_check_orient(df, "split", check_dtype=False)
_check_orient(df, "records", check_dtype=False)
_check_orient(df, "values", check_dtype=False)
_check_orient(df, "columns", check_dtype=False)
# index oriented is problematic as it is read back in in a transposed
# state, so the columns are interpreted as having mixed data and
# given object dtypes.
# force everything to have object dtype beforehand
_check_orient(df.transpose().transpose(), "index", dtype=False)
def test_frame_from_json_bad_data(self):
self.assertRaises(ValueError, read_json, StringIO('{"key":b:a:d}'))
# too few indices
json = StringIO('{"columns":["A","B"],'
'"index":["2","3"],'
'"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}')
self.assertRaises(ValueError, read_json, json,
orient="split")
# too many columns
json = StringIO('{"columns":["A","B","C"],'
'"index":["1","2","3"],'
'"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}')
self.assertRaises(AssertionError, read_json, json,
orient="split")
# bad key
json = StringIO('{"badkey":["A","B"],'
'"index":["2","3"],'
'"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}')
with tm.assertRaisesRegexp(ValueError, r"unexpected key\(s\): badkey"):
read_json(json, orient="split")
def test_frame_from_json_nones(self):
df = DataFrame([[1, 2], [4, 5, 6]])
unser = read_json(df.to_json())
self.assertTrue(np.isnan(unser[2][0]))
df = DataFrame([['1', '2'], ['4', '5', '6']])
unser = read_json(df.to_json())
self.assertTrue(np.isnan(unser[2][0]))
unser = read_json(df.to_json(),dtype=False)
self.assertTrue(unser[2][0] is None)
unser = read_json(df.to_json(),convert_axes=False,dtype=False)
self.assertTrue(unser['2']['0'] is None)
unser = read_json(df.to_json(), numpy=False)
self.assertTrue(np.isnan(unser[2][0]))
unser = read_json(df.to_json(), numpy=False, dtype=False)
self.assertTrue(unser[2][0] is None)
unser = read_json(df.to_json(), numpy=False, convert_axes=False, dtype=False)
self.assertTrue(unser['2']['0'] is None)
# infinities get mapped to nulls which get mapped to NaNs during
# deserialisation
df = DataFrame([[1, 2], [4, 5, 6]])
df.loc[0,2] = np.inf
unser = read_json(df.to_json())
self.assertTrue(np.isnan(unser[2][0]))
unser = read_json(df.to_json(), dtype=False)
self.assertTrue(np.isnan(unser[2][0]))
df.loc[0,2] = np.NINF
unser = read_json(df.to_json())
self.assertTrue(np.isnan(unser[2][0]))
unser = read_json(df.to_json(),dtype=False)
self.assertTrue(np.isnan(unser[2][0]))
def test_frame_to_json_except(self):
df = DataFrame([1, 2, 3])
self.assertRaises(ValueError, df.to_json, orient="garbage")
def test_frame_empty(self):
df = DataFrame(columns=['jim', 'joe'])
self.assertFalse(df._is_mixed_type)
assert_frame_equal(read_json(df.to_json(), dtype=dict(df.dtypes)), df)
def test_frame_empty_mixedtype(self):
# mixed type
df = DataFrame(columns=['jim', 'joe'])
df['joe'] = df['joe'].astype('i8')
self.assertTrue(df._is_mixed_type)
assert_frame_equal(read_json(df.to_json(), dtype=dict(df.dtypes)), df)
def test_v12_compat(self):
df = DataFrame(
[[1.56808523, 0.65727391, 1.81021139, -0.17251653],
[-0.2550111, -0.08072427, -0.03202878, -0.17581665],
[1.51493992, 0.11805825, 1.629455, -1.31506612],
[-0.02765498, 0.44679743, 0.33192641, -0.27885413],
[0.05951614, -2.69652057, 1.28163262, 0.34703478]],
columns=['A', 'B', 'C', 'D'],
index=pd.date_range('2000-01-03', '2000-01-07'))
df['date'] = pd.Timestamp('19920106 18:21:32.12')
df.ix[3, 'date'] = pd.Timestamp('20130101')
df['modified'] = df['date']
df.ix[1, 'modified'] = pd.NaT
v12_json = os.path.join(self.dirpath, 'tsframe_v012.json')
df_unser = pd.read_json(v12_json)
assert_frame_equal(df, df_unser)
df_iso = df.drop(['modified'], axis=1)
v12_iso_json = os.path.join(self.dirpath, 'tsframe_iso_v012.json')
df_unser_iso = pd.read_json(v12_iso_json)
assert_frame_equal(df_iso, df_unser_iso)
def test_blocks_compat_GH9037(self):
index = pd.date_range('20000101', periods=10, freq='H')
df_mixed = DataFrame(OrderedDict(
float_1=[-0.92077639, 0.77434435, 1.25234727, 0.61485564,
-0.60316077, 0.24653374, 0.28668979, -2.51969012,
0.95748401, -1.02970536],
int_1=[19680418, 75337055, 99973684, 65103179, 79373900,
40314334, 21290235, 4991321, 41903419, 16008365],
str_1=['78c608f1', '64a99743', '13d2ff52', 'ca7f4af2', '97236474',
'bde7e214', '1a6bde47', 'b1190be5', '7a669144', '8d64d068'],
float_2=[-0.0428278, -1.80872357, 3.36042349, -0.7573685,
-0.48217572, 0.86229683, 1.08935819, 0.93898739,
-0.03030452, 1.43366348],
str_2=['14f04af9', 'd085da90', '4bcfac83', '81504caf', '2ffef4a9',
'08e2f5c4', '07e1af03', 'addbd4a7', '1f6a09ba', '4bfc4d87'],
int_2=[86967717, 98098830, 51927505, 20372254, 12601730, 20884027,
34193846, 10561746, 24867120, 76131025]
), index=index)
# JSON deserialisation always creates unicode strings
df_mixed.columns = df_mixed.columns.astype('unicode')
df_roundtrip = pd.read_json(df_mixed.to_json(orient='split'),
orient='split')
assert_frame_equal(df_mixed, df_roundtrip,
check_index_type=True,
check_column_type=True,
check_frame_type=True,
by_blocks=True,
check_exact=True)
def test_series_non_unique_index(self):
s = Series(['a', 'b'], index=[1, 1])
self.assertRaises(ValueError, s.to_json, orient='index')
assert_series_equal(s, read_json(s.to_json(orient='split'),
orient='split', typ='series'))
unser = read_json(s.to_json(orient='records'),
orient='records', typ='series')
np.testing.assert_equal(s.values, unser.values)
def test_series_from_json_to_json(self):
def _check_orient(series, orient, dtype=None, numpy=False):
series = series.sort_index()
unser = read_json(series.to_json(orient=orient),
typ='series', orient=orient, numpy=numpy,
dtype=dtype)
unser = unser.sort_index()
if orient == "records" or orient == "values":
assert_almost_equal(series.values, unser.values)
else:
if orient == "split":
assert_series_equal(series, unser)
else:
assert_series_equal(series, unser, check_names=False)
def _check_all_orients(series, dtype=None):
_check_orient(series, "columns", dtype=dtype)
_check_orient(series, "records", dtype=dtype)
_check_orient(series, "split", dtype=dtype)
_check_orient(series, "index", dtype=dtype)
_check_orient(series, "values", dtype=dtype)
_check_orient(series, "columns", dtype=dtype, numpy=True)
_check_orient(series, "records", dtype=dtype, numpy=True)
_check_orient(series, "split", dtype=dtype, numpy=True)
_check_orient(series, "index", dtype=dtype, numpy=True)
_check_orient(series, "values", dtype=dtype, numpy=True)
# basic
_check_all_orients(self.series)
self.assertEqual(self.series.to_json(),
self.series.to_json(orient="index"))
objSeries = Series([str(d) for d in self.objSeries],
index=self.objSeries.index,
name=self.objSeries.name)
_check_all_orients(objSeries, dtype=False)
_check_all_orients(self.empty_series)
_check_all_orients(self.ts)
# dtype
s = Series(lrange(6), index=['a','b','c','d','e','f'])
_check_all_orients(Series(s, dtype=np.float64), dtype=np.float64)
_check_all_orients(Series(s, dtype=np.int), dtype=np.int)
def test_series_to_json_except(self):
s = Series([1, 2, 3])
self.assertRaises(ValueError, s.to_json, orient="garbage")
def test_series_from_json_precise_float(self):
s = Series([4.56, 4.56, 4.56])
result = read_json(s.to_json(), typ='series', precise_float=True)
assert_series_equal(result, s)
def test_frame_from_json_precise_float(self):
df = DataFrame([[4.56, 4.56, 4.56], [4.56, 4.56, 4.56]])
result = read_json(df.to_json(), precise_float=True)
assert_frame_equal(result, df)
def test_typ(self):
s = Series(lrange(6), index=['a','b','c','d','e','f'], dtype='int64')
result = read_json(s.to_json(),typ=None)
assert_series_equal(result,s)
def test_reconstruction_index(self):
df = DataFrame([[1, 2, 3], [4, 5, 6]])
result = read_json(df.to_json())
# the index is serialized as strings....correct?
assert_frame_equal(result, df)
def test_path(self):
with ensure_clean('test.json') as path:
for df in [self.frame, self.frame2, self.intframe, self.tsframe,
self.mixed_frame]:
df.to_json(path)
read_json(path)
def test_axis_dates(self):
# frame
json = self.tsframe.to_json()
result = read_json(json)
assert_frame_equal(result, self.tsframe)
# series
json = self.ts.to_json()
result = read_json(json, typ='series')
assert_series_equal(result, self.ts, check_names=False)
self.assertTrue(result.name is None)
def test_convert_dates(self):
# frame
df = self.tsframe.copy()
df['date'] = Timestamp('20130101')
json = df.to_json()
result = read_json(json)
assert_frame_equal(result, df)
df['foo'] = 1.
json = df.to_json(date_unit='ns')
result = read_json(json, convert_dates=False)
expected = df.copy()
expected['date'] = expected['date'].values.view('i8')
expected['foo'] = expected['foo'].astype('int64')
assert_frame_equal(result, expected)
# series
ts = Series(Timestamp('20130101'), index=self.ts.index)
json = ts.to_json()
result = read_json(json, typ='series')
assert_series_equal(result, ts)
def test_date_format_frame(self):
df = self.tsframe.copy()
def test_w_date(date, date_unit=None):
df['date'] = Timestamp(date)
df.ix[1, 'date'] = pd.NaT
df.ix[5, 'date'] = pd.NaT
if date_unit:
json = df.to_json(date_format='iso', date_unit=date_unit)
else:
json = df.to_json(date_format='iso')
result = read_json(json)
assert_frame_equal(result, df)
test_w_date('20130101 20:43:42.123')
test_w_date('20130101 20:43:42', date_unit='s')
test_w_date('20130101 20:43:42.123', date_unit='ms')
test_w_date('20130101 20:43:42.123456', date_unit='us')
test_w_date('20130101 20:43:42.123456789', date_unit='ns')
self.assertRaises(ValueError, df.to_json, date_format='iso',
date_unit='foo')
def test_date_format_series(self):
def test_w_date(date, date_unit=None):
ts = Series(Timestamp(date), index=self.ts.index)
ts.ix[1] = pd.NaT
ts.ix[5] = pd.NaT
if date_unit:
json = ts.to_json(date_format='iso', date_unit=date_unit)
else:
json = ts.to_json(date_format='iso')
result = read_json(json, typ='series')
assert_series_equal(result, ts)
test_w_date('20130101 20:43:42.123')
test_w_date('20130101 20:43:42', date_unit='s')
test_w_date('20130101 20:43:42.123', date_unit='ms')
test_w_date('20130101 20:43:42.123456', date_unit='us')
test_w_date('20130101 20:43:42.123456789', date_unit='ns')
ts = Series(Timestamp('20130101 20:43:42.123'), index=self.ts.index)
self.assertRaises(ValueError, ts.to_json, date_format='iso',
date_unit='foo')
def test_date_unit(self):
df = self.tsframe.copy()
df['date'] = Timestamp('20130101 20:43:42')
df.ix[1, 'date'] = Timestamp('19710101 20:43:42')
df.ix[2, 'date'] = Timestamp('21460101 20:43:42')
df.ix[4, 'date'] = pd.NaT
for unit in ('s', 'ms', 'us', 'ns'):
json = df.to_json(date_format='epoch', date_unit=unit)
# force date unit
result = read_json(json, date_unit=unit)
assert_frame_equal(result, df)
# detect date unit
result = read_json(json, date_unit=None)
assert_frame_equal(result, df)
def test_weird_nested_json(self):
# this used to core dump the parser
s = r'''{
"status": "success",
"data": {
"posts": [
{
"id": 1,
"title": "A blog post",
"body": "Some useful content"
},
{
"id": 2,
"title": "Another blog post",
"body": "More content"
}
]
}
}'''
read_json(s)
def test_doc_example(self):
dfj2 = DataFrame(np.random.randn(5, 2), columns=list('AB'))
dfj2['date'] = Timestamp('20130101')
dfj2['ints'] = lrange(5)
dfj2['bools'] = True
dfj2.index = pd.date_range('20130101',periods=5)
json = dfj2.to_json()
result = read_json(json,dtype={'ints' : np.int64, 'bools' : np.bool_})
assert_frame_equal(result,result)
def test_misc_example(self):
# parsing unordered input fails
result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]',numpy=True)
expected = DataFrame([[1,2],[1,2]],columns=['a','b'])
with tm.assertRaisesRegexp(AssertionError,
'\[index\] left \[.+\], right \[.+\]'):
assert_frame_equal(result, expected)
result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]')
expected = DataFrame([[1,2],[1,2]],columns=['a','b'])
assert_frame_equal(result,expected)
@network
def test_round_trip_exception_(self):
# GH 3867
csv = 'https://raw.github.com/hayd/lahman2012/master/csvs/Teams.csv'
df = pd.read_csv(csv)
s = df.to_json()
result = pd.read_json(s)
assert_frame_equal(result.reindex(index=df.index,columns=df.columns),df)
@network
def test_url(self):
url = 'https://api.github.com/repos/pydata/pandas/issues?per_page=5'
result = read_json(url, convert_dates=True)
for c in ['created_at', 'closed_at', 'updated_at']:
self.assertEqual(result[c].dtype, 'datetime64[ns]')
def test_timedelta(self):
converter = lambda x: pd.to_timedelta(x,unit='ms')
s = Series([timedelta(23), timedelta(seconds=5)])
self.assertEqual(s.dtype,'timedelta64[ns]')
assert_series_equal(s, pd.read_json(s.to_json(),typ='series').apply(converter))
frame = DataFrame([timedelta(23), timedelta(seconds=5)])
self.assertEqual(frame[0].dtype,'timedelta64[ns]')
assert_frame_equal(
frame, pd.read_json(frame.to_json()).apply(converter))
frame = DataFrame({'a': [timedelta(days=23), timedelta(seconds=5)],
'b': [1, 2],
'c': pd.date_range(start='20130101', periods=2)})
result = pd.read_json(frame.to_json(date_unit='ns'))
result['a'] = pd.to_timedelta(result.a, unit='ns')
result['c'] = pd.to_datetime(result.c)
assert_frame_equal(frame, result)
def test_mixed_timedelta_datetime(self):
frame = DataFrame({'a': [timedelta(23), pd.Timestamp('20130101')]},
dtype=object)
expected = DataFrame({'a': [pd.Timedelta(frame.a[0]).value,
pd.Timestamp(frame.a[1]).value]})
result = pd.read_json(frame.to_json(date_unit='ns'),
dtype={'a': 'int64'})
assert_frame_equal(result, expected)
def test_default_handler(self):
value = object()
frame = DataFrame({'a': ['a', value]})
expected = frame.applymap(str)
result = pd.read_json(frame.to_json(default_handler=str))
assert_frame_equal(expected, result)
def test_default_handler_raises(self):
def my_handler_raises(obj):
raise TypeError("raisin")
self.assertRaises(TypeError, DataFrame({'a': [1, 2, object()]}).to_json,
default_handler=my_handler_raises)