forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcategory.py
653 lines (532 loc) · 22.2 KB
/
category.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
import numpy as np
import pandas.index as _index
from pandas import compat
from pandas.compat.numpy import function as nv
from pandas.types.generic import ABCCategorical, ABCSeries
from pandas.types.common import (is_categorical_dtype,
_ensure_platform_int,
is_list_like,
is_scalar)
from pandas.types.missing import array_equivalent
from pandas.util.decorators import (Appender, cache_readonly,
deprecate_kwarg)
from pandas.core.config import get_option
from pandas.indexes.base import Index, _index_shared_docs
import pandas.core.base as base
import pandas.core.missing as missing
import pandas.indexes.base as ibase
class CategoricalIndex(Index, base.PandasDelegate):
"""
Immutable Index implementing an ordered, sliceable set. CategoricalIndex
represents a sparsely populated Index with an underlying Categorical.
.. versionadded:: 0.16.1
Parameters
----------
data : array-like or Categorical, (1-dimensional)
categories : optional, array-like
categories for the CategoricalIndex
ordered : boolean,
designating if the categories are ordered
copy : bool
Make a copy of input ndarray
name : object
Name to be stored in the index
"""
_typ = 'categoricalindex'
_engine_type = _index.Int64Engine
_attributes = ['name']
def __new__(cls, data=None, categories=None, ordered=None, dtype=None,
copy=False, name=None, fastpath=False, **kwargs):
if fastpath:
return cls._simple_new(data, name=name)
if name is None and hasattr(data, 'name'):
name = data.name
if isinstance(data, ABCCategorical):
data = cls._create_categorical(cls, data, categories, ordered)
elif isinstance(data, CategoricalIndex):
data = data._data
data = cls._create_categorical(cls, data, categories, ordered)
else:
# don't allow scalars
# if data is None, then categories must be provided
if is_scalar(data):
if data is not None or categories is None:
cls._scalar_data_error(data)
data = []
data = cls._create_categorical(cls, data, categories, ordered)
if copy:
data = data.copy()
return cls._simple_new(data, name=name)
def _create_from_codes(self, codes, categories=None, ordered=None,
name=None):
"""
*this is an internal non-public method*
create the correct categorical from codes
Parameters
----------
codes : new codes
categories : optional categories, defaults to existing
ordered : optional ordered attribute, defaults to existing
name : optional name attribute, defaults to existing
Returns
-------
CategoricalIndex
"""
from pandas.core.categorical import Categorical
if categories is None:
categories = self.categories
if ordered is None:
ordered = self.ordered
if name is None:
name = self.name
cat = Categorical.from_codes(codes, categories=categories,
ordered=self.ordered)
return CategoricalIndex(cat, name=name)
@staticmethod
def _create_categorical(self, data, categories=None, ordered=None):
"""
*this is an internal non-public method*
create the correct categorical from data and the properties
Parameters
----------
data : data for new Categorical
categories : optional categories, defaults to existing
ordered : optional ordered attribute, defaults to existing
Returns
-------
Categorical
"""
if not isinstance(data, ABCCategorical):
ordered = False if ordered is None else ordered
from pandas.core.categorical import Categorical
data = Categorical(data, categories=categories, ordered=ordered)
else:
if categories is not None:
data = data.set_categories(categories)
if ordered is not None:
data = data.set_ordered(ordered)
return data
@classmethod
def _simple_new(cls, values, name=None, categories=None, ordered=None,
**kwargs):
result = object.__new__(cls)
values = cls._create_categorical(cls, values, categories, ordered)
result._data = values
result.name = name
for k, v in compat.iteritems(kwargs):
setattr(result, k, v)
result._reset_identity()
return result
@Appender(_index_shared_docs['_shallow_copy'])
def _shallow_copy(self, values=None, categories=None, ordered=None,
**kwargs):
# categories and ordered can't be part of attributes,
# as these are properties
if categories is None:
categories = self.categories
if ordered is None:
ordered = self.ordered
return super(CategoricalIndex,
self)._shallow_copy(values=values, categories=categories,
ordered=ordered, **kwargs)
def _is_dtype_compat(self, other):
"""
*this is an internal non-public method*
provide a comparison between the dtype of self and other (coercing if
needed)
Raises
------
TypeError if the dtypes are not compatible
"""
if is_categorical_dtype(other):
if isinstance(other, CategoricalIndex):
other = other._values
if not other.is_dtype_equal(self):
raise TypeError("categories must match existing categories "
"when appending")
else:
values = other
if not is_list_like(values):
values = [values]
other = CategoricalIndex(self._create_categorical(
self, other, categories=self.categories, ordered=self.ordered))
if not other.isin(values).all():
raise TypeError("cannot append a non-category item to a "
"CategoricalIndex")
return other
def equals(self, other):
"""
Determines if two CategorialIndex objects contain the same elements.
"""
if self.is_(other):
return True
try:
other = self._is_dtype_compat(other)
return array_equivalent(self._data, other)
except (TypeError, ValueError):
pass
return False
@property
def _formatter_func(self):
return self.categories._formatter_func
def _format_attrs(self):
"""
Return a list of tuples of the (attr,formatted_value)
"""
max_categories = (10 if get_option("display.max_categories") == 0 else
get_option("display.max_categories"))
attrs = [
('categories',
ibase.default_pprint(self.categories,
max_seq_items=max_categories)),
('ordered', self.ordered)]
if self.name is not None:
attrs.append(('name', ibase.default_pprint(self.name)))
attrs.append(('dtype', "'%s'" % self.dtype))
max_seq_items = get_option('display.max_seq_items') or len(self)
if len(self) > max_seq_items:
attrs.append(('length', len(self)))
return attrs
@property
def inferred_type(self):
return 'categorical'
@property
def values(self):
""" return the underlying data, which is a Categorical """
return self._data
def get_values(self):
""" return the underlying data as an ndarray """
return self._data.get_values()
@property
def codes(self):
return self._data.codes
@property
def categories(self):
return self._data.categories
@property
def ordered(self):
return self._data.ordered
def __contains__(self, key):
hash(key)
return key in self.values
def __array__(self, dtype=None):
""" the array interface, return my values """
return np.array(self._data, dtype=dtype)
@cache_readonly
def _isnan(self):
""" return if each value is nan"""
return self._data.codes == -1
@Appender(ibase._index_shared_docs['fillna'])
def fillna(self, value, downcast=None):
self._assert_can_do_op(value)
return CategoricalIndex(self._data.fillna(value), name=self.name)
def argsort(self, *args, **kwargs):
return self.values.argsort(*args, **kwargs)
@cache_readonly
def _engine(self):
# we are going to look things up with the codes themselves
return self._engine_type(lambda: self.codes.astype('i8'), len(self))
@cache_readonly
def is_unique(self):
return not self.duplicated().any()
@Appender(base._shared_docs['unique'] % ibase._index_doc_kwargs)
def unique(self):
result = base.IndexOpsMixin.unique(self)
# CategoricalIndex._shallow_copy uses keeps original categories
# and ordered if not otherwise specified
return self._shallow_copy(result, categories=result.categories,
ordered=result.ordered)
@deprecate_kwarg('take_last', 'keep', mapping={True: 'last',
False: 'first'})
@Appender(base._shared_docs['duplicated'] % ibase._index_doc_kwargs)
def duplicated(self, keep='first'):
from pandas.hashtable import duplicated_int64
codes = self.codes.astype('i8')
return duplicated_int64(codes, keep)
def _to_safe_for_reshape(self):
""" convert to object if we are a categorical """
return self.astype('object')
def get_loc(self, key, method=None):
"""
Get integer location for requested label
Parameters
----------
key : label
method : {None}
* default: exact matches only.
Returns
-------
loc : int if unique index, possibly slice or mask if not
"""
codes = self.categories.get_loc(key)
if (codes == -1):
raise KeyError(key)
return self._engine.get_loc(codes)
def _can_reindex(self, indexer):
""" always allow reindexing """
pass
def where(self, cond, other=None):
"""
.. versionadded:: 0.19.0
Return an Index of same shape as self and whose corresponding
entries are from self where cond is True and otherwise are from
other.
Parameters
----------
cond : boolean same length as self
other : scalar, or array-like
"""
if other is None:
other = self._na_value
values = np.where(cond, self.values, other)
from pandas.core.categorical import Categorical
cat = Categorical(values,
categories=self.categories,
ordered=self.ordered)
return self._shallow_copy(cat, **self._get_attributes_dict())
def reindex(self, target, method=None, level=None, limit=None,
tolerance=None):
"""
Create index with target's values (move/add/delete values as necessary)
Returns
-------
new_index : pd.Index
Resulting index
indexer : np.ndarray or None
Indices of output values in original index
"""
if method is not None:
raise NotImplementedError("argument method is not implemented for "
"CategoricalIndex.reindex")
if level is not None:
raise NotImplementedError("argument level is not implemented for "
"CategoricalIndex.reindex")
if limit is not None:
raise NotImplementedError("argument limit is not implemented for "
"CategoricalIndex.reindex")
target = ibase._ensure_index(target)
if not is_categorical_dtype(target) and not target.is_unique:
raise ValueError("cannot reindex with a non-unique indexer")
indexer, missing = self.get_indexer_non_unique(np.array(target))
new_target = self.take(indexer)
# filling in missing if needed
if len(missing):
cats = self.categories.get_indexer(target)
if (cats == -1).any():
# coerce to a regular index here!
result = Index(np.array(self), name=self.name)
new_target, indexer, _ = result._reindex_non_unique(
np.array(target))
else:
codes = new_target.codes.copy()
codes[indexer == -1] = cats[missing]
new_target = self._create_from_codes(codes)
# we always want to return an Index type here
# to be consistent with .reindex for other index types (e.g. they don't
# coerce based on the actual values, only on the dtype)
# unless we had an inital Categorical to begin with
# in which case we are going to conform to the passed Categorical
new_target = np.asarray(new_target)
if is_categorical_dtype(target):
new_target = target._shallow_copy(new_target, name=self.name)
else:
new_target = Index(new_target, name=self.name)
return new_target, indexer
def _reindex_non_unique(self, target):
""" reindex from a non-unique; which CategoricalIndex's are almost
always
"""
new_target, indexer = self.reindex(target)
new_indexer = None
check = indexer == -1
if check.any():
new_indexer = np.arange(len(self.take(indexer)))
new_indexer[check] = -1
cats = self.categories.get_indexer(target)
if not (cats == -1).any():
# .reindex returns normal Index. Revert to CategoricalIndex if
# all targets are included in my categories
new_target = self._shallow_copy(new_target)
return new_target, indexer, new_indexer
def get_indexer(self, target, method=None, limit=None, tolerance=None):
"""
Compute indexer and mask for new index given the current index. The
indexer should be then used as an input to ndarray.take to align the
current data to the new index. The mask determines whether labels are
found or not in the current index
Parameters
----------
target : MultiIndex or Index (of tuples)
method : {'pad', 'ffill', 'backfill', 'bfill'}
pad / ffill: propagate LAST valid observation forward to next valid
backfill / bfill: use NEXT valid observation to fill gap
Notes
-----
This is a low-level method and probably should be used at your own risk
Examples
--------
>>> indexer, mask = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
>>> new_values[-mask] = np.nan
Returns
-------
(indexer, mask) : (ndarray, ndarray)
"""
method = missing.clean_reindex_fill_method(method)
target = ibase._ensure_index(target)
if isinstance(target, CategoricalIndex):
target = target.categories
if method == 'pad' or method == 'backfill':
raise NotImplementedError("method='pad' and method='backfill' not "
"implemented yet for CategoricalIndex")
elif method == 'nearest':
raise NotImplementedError("method='nearest' not implemented yet "
'for CategoricalIndex')
else:
codes = self.categories.get_indexer(target)
indexer, _ = self._engine.get_indexer_non_unique(codes)
return _ensure_platform_int(indexer)
def get_indexer_non_unique(self, target):
""" this is the same for a CategoricalIndex for get_indexer; the API
returns the missing values as well
"""
target = ibase._ensure_index(target)
if isinstance(target, CategoricalIndex):
target = target.categories
codes = self.categories.get_indexer(target)
return self._engine.get_indexer_non_unique(codes)
def _convert_list_indexer(self, keyarr, kind=None):
"""
we are passed a list indexer.
Return our indexer or raise if all of the values are not included in
the categories
"""
codes = self.categories.get_indexer(keyarr)
if (codes == -1).any():
raise KeyError("a list-indexer must only include values that are "
"in the categories")
return None
@Appender(_index_shared_docs['take'])
def take(self, indices, axis=0, allow_fill=True,
fill_value=None, **kwargs):
nv.validate_take(tuple(), kwargs)
indices = _ensure_platform_int(indices)
taken = self._assert_take_fillable(self.codes, indices,
allow_fill=allow_fill,
fill_value=fill_value,
na_value=-1)
return self._create_from_codes(taken)
def map(self, mapper):
"""
Apply mapper function to its categories (not codes).
Parameters
----------
mapper : callable
Function to be applied. When all categories are mapped
to different categories, the result will be Categorical which has
the same order property as the original. Otherwise, the result will
be np.ndarray.
Returns
-------
applied : Categorical or np.ndarray.
"""
return self.values.map(mapper)
def delete(self, loc):
"""
Make new Index with passed location(-s) deleted
Returns
-------
new_index : Index
"""
return self._create_from_codes(np.delete(self.codes, loc))
def insert(self, loc, item):
"""
Make new Index inserting new item at location. Follows
Python list.append semantics for negative values
Parameters
----------
loc : int
item : object
Returns
-------
new_index : Index
Raises
------
ValueError if the item is not in the categories
"""
code = self.categories.get_indexer([item])
if (code == -1):
raise TypeError("cannot insert an item into a CategoricalIndex "
"that is not already an existing category")
codes = self.codes
codes = np.concatenate((codes[:loc], code, codes[loc:]))
return self._create_from_codes(codes)
def _append_same_dtype(self, to_concat, name):
"""
Concatenate to_concat which has the same class
ValueError if other is not in the categories
"""
to_concat = [self._is_dtype_compat(c) for c in to_concat]
codes = np.concatenate([c.codes for c in to_concat])
result = self._create_from_codes(codes, name=name)
# if name is None, _create_from_codes sets self.name
result.name = name
return result
@classmethod
def _add_comparison_methods(cls):
""" add in comparison methods """
def _make_compare(op):
def _evaluate_compare(self, other):
# if we have a Categorical type, then must have the same
# categories
if isinstance(other, CategoricalIndex):
other = other._values
elif isinstance(other, Index):
other = self._create_categorical(
self, other._values, categories=self.categories,
ordered=self.ordered)
if isinstance(other, (ABCCategorical, np.ndarray,
ABCSeries)):
if len(self.values) != len(other):
raise ValueError("Lengths must match to compare")
if isinstance(other, ABCCategorical):
if not self.values.is_dtype_equal(other):
raise TypeError("categorical index comparisions must "
"have the same categories and ordered "
"attributes")
return getattr(self.values, op)(other)
return _evaluate_compare
cls.__eq__ = _make_compare('__eq__')
cls.__ne__ = _make_compare('__ne__')
cls.__lt__ = _make_compare('__lt__')
cls.__gt__ = _make_compare('__gt__')
cls.__le__ = _make_compare('__le__')
cls.__ge__ = _make_compare('__ge__')
def _delegate_method(self, name, *args, **kwargs):
""" method delegation to the ._values """
method = getattr(self._values, name)
if 'inplace' in kwargs:
raise ValueError("cannot use inplace with CategoricalIndex")
res = method(*args, **kwargs)
if is_scalar(res):
return res
return CategoricalIndex(res, name=self.name)
@classmethod
def _add_accessors(cls):
""" add in Categorical accessor methods """
from pandas.core.categorical import Categorical
CategoricalIndex._add_delegate_accessors(
delegate=Categorical, accessors=["rename_categories",
"reorder_categories",
"add_categories",
"remove_categories",
"remove_unused_categories",
"set_categories",
"as_ordered", "as_unordered",
"min", "max"],
typ='method', overwrite=True)
CategoricalIndex._add_numericlike_set_methods_disabled()
CategoricalIndex._add_numeric_methods_disabled()
CategoricalIndex._add_logical_methods_disabled()
CategoricalIndex._add_comparison_methods()
CategoricalIndex._add_accessors()