forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_categorical.py
222 lines (168 loc) · 7.88 KB
/
test_categorical.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# pylint: disable=E1101,E1103,W0232
from datetime import datetime
from pandas.compat import range, lrange, u
import nose
import re
import numpy as np
from pandas.core.categorical import Categorical
from pandas.core.index import Index, Int64Index, MultiIndex
from pandas.core.frame import DataFrame
from pandas.tseries.period import PeriodIndex
from pandas.util.testing import assert_almost_equal
import pandas.core.common as com
from pandas.tseries.period import PeriodIndex
import pandas.util.testing as tm
class TestCategorical(tm.TestCase):
_multiprocess_can_split_ = True
def setUp(self):
self.factor = Categorical.from_array(['a', 'b', 'b', 'a',
'a', 'c', 'c', 'c'])
def test_getitem(self):
self.assertEqual(self.factor[0], 'a')
self.assertEqual(self.factor[-1], 'c')
subf = self.factor[[0, 1, 2]]
tm.assert_almost_equal(subf.labels, [0, 1, 1])
subf = self.factor[np.asarray(self.factor) == 'c']
tm.assert_almost_equal(subf.labels, [2, 2, 2])
def test_constructor_unsortable(self):
raise nose.SkipTest('skipping for now')
arr = np.array([1, 2, 3, datetime.now()], dtype='O')
# it works!
factor = Categorical.from_array(arr)
def test_factor_agg(self):
import pandas.core.frame as frame
arr = np.arange(len(self.factor))
f = np.sum
agged = frame.factor_agg(self.factor, arr, f)
labels = self.factor.labels
for i, idx in enumerate(self.factor.levels):
self.assertEqual(f(arr[labels == i]), agged[i])
def test_comparisons(self):
result = self.factor[self.factor == 'a']
expected = self.factor[np.asarray(self.factor) == 'a']
self.assert_(result.equals(expected))
result = self.factor[self.factor != 'a']
expected = self.factor[np.asarray(self.factor) != 'a']
self.assert_(result.equals(expected))
result = self.factor[self.factor < 'c']
expected = self.factor[np.asarray(self.factor) < 'c']
self.assert_(result.equals(expected))
result = self.factor[self.factor > 'a']
expected = self.factor[np.asarray(self.factor) > 'a']
self.assert_(result.equals(expected))
result = self.factor[self.factor >= 'b']
expected = self.factor[np.asarray(self.factor) >= 'b']
self.assert_(result.equals(expected))
result = self.factor[self.factor <= 'b']
expected = self.factor[np.asarray(self.factor) <= 'b']
self.assert_(result.equals(expected))
n = len(self.factor)
other = self.factor[np.random.permutation(n)]
result = self.factor == other
expected = np.asarray(self.factor) == np.asarray(other)
self.assert_numpy_array_equal(result, expected)
result = self.factor == 'd'
expected = np.repeat(False, len(self.factor))
self.assert_numpy_array_equal(result, expected)
def test_na_flags_int_levels(self):
# #1457
levels = lrange(10)
labels = np.random.randint(0, 10, 20)
labels[::5] = -1
cat = Categorical(labels, levels)
repr(cat)
self.assert_numpy_array_equal(com.isnull(cat), labels == -1)
def test_levels_none(self):
factor = Categorical(['a', 'b', 'b', 'a',
'a', 'c', 'c', 'c'])
self.assert_(factor.equals(self.factor))
def test_describe(self):
# string type
desc = self.factor.describe()
expected = DataFrame.from_dict(dict(counts=[3, 2, 3],
freqs=[3/8., 2/8., 3/8.],
levels=['a', 'b', 'c'])
).set_index('levels')
tm.assert_frame_equal(desc, expected)
# check an integer one
desc = Categorical([1,2,3,1,2,3,3,2,1,1,1]).describe()
expected = DataFrame.from_dict(dict(counts=[5, 3, 3],
freqs=[5/11., 3/11., 3/11.],
levels=[1,2,3]
)
).set_index('levels')
tm.assert_frame_equal(desc, expected)
def test_print(self):
expected = [" a", " b", " b", " a", " a", " c", " c", " c",
"Levels (3): Index([a, b, c], dtype=object)"]
expected = "\n".join(expected)
# hack because array_repr changed in numpy > 1.6.x
actual = repr(self.factor)
pat = "Index\(\['a', 'b', 'c']"
sub = "Index([a, b, c]"
actual = re.sub(pat, sub, actual)
self.assertEquals(actual, expected)
def test_big_print(self):
factor = Categorical([0,1,2,0,1,2]*100, ['a', 'b', 'c'], name='cat')
expected = [" a", " b", " c", " a", " b", " c", " a", " b", " c",
" a", " b", " c", " a", "...", " c", " a", " b", " c",
" a", " b", " c", " a", " b", " c", " a", " b", " c",
"Levels (3): Index([a, b, c], dtype=object)",
"Name: cat, Length: 600" ]
expected = "\n".join(expected)
# hack because array_repr changed in numpy > 1.6.x
actual = repr(factor)
pat = "Index\(\['a', 'b', 'c']"
sub = "Index([a, b, c]"
actual = re.sub(pat, sub, actual)
self.assertEquals(actual, expected)
def test_empty_print(self):
factor = Categorical([], ["a","b","c"], name="cat")
expected = ("Categorical([], Name: cat, Levels (3): "
"Index([a, b, c], dtype=object)")
# hack because array_repr changed in numpy > 1.6.x
actual = repr(factor)
pat = "Index\(\['a', 'b', 'c']"
sub = "Index([a, b, c]"
actual = re.sub(pat, sub, actual)
self.assertEqual(actual, expected)
factor = Categorical([], ["a","b","c"])
expected = ("Categorical([], Levels (3): "
"Index([a, b, c], dtype=object)")
# hack because array_repr changed in numpy > 1.6.x
actual = repr(factor)
pat = "Index\(\['a', 'b', 'c']"
sub = "Index([a, b, c]"
actual = re.sub(pat, sub, actual)
self.assertEqual(actual, expected)
factor = Categorical([], [])
expected = ("Categorical([], Levels (0): "
"Index([], dtype=object)")
self.assertEqual(repr(factor), expected)
def test_periodindex(self):
idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02',
'2014-03', '2014-03'], freq='M')
cat1 = Categorical.from_array(idx1)
exp_arr = np.array([0, 0, 1, 1, 2, 2])
exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M')
self.assert_numpy_array_equal(cat1.labels, exp_arr)
self.assert_(cat1.levels.equals(exp_idx))
idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01',
'2014-03', '2014-01'], freq='M')
cat2 = Categorical.from_array(idx2)
exp_arr = np.array([2, 2, 1, 0, 2, 0])
self.assert_numpy_array_equal(cat2.labels, exp_arr)
self.assert_(cat2.levels.equals(exp_idx))
idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09',
'2013-08', '2013-07', '2013-05'], freq='M')
cat3 = Categorical.from_array(idx3)
exp_arr = np.array([6, 5, 4, 3, 2, 1, 0])
exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09',
'2013-10', '2013-11', '2013-12'], freq='M')
self.assert_numpy_array_equal(cat3.labels, exp_arr)
self.assert_(cat3.levels.equals(exp_idx))
if __name__ == '__main__':
import nose
nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'],
# '--with-coverage', '--cover-package=pandas.core'],
exit=False)