forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.py
854 lines (701 loc) · 32.1 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
# -*- coding: utf-8 -*-
from pandas import compat
from pandas.compat import PY3
import numpy as np
from pandas import (Series, Index, Float64Index, Int64Index, RangeIndex,
MultiIndex, CategoricalIndex, DatetimeIndex,
TimedeltaIndex, PeriodIndex, notnull)
from pandas.types.common import needs_i8_conversion
from pandas.util.testing import assertRaisesRegexp
import pandas.util.testing as tm
import pandas as pd
class Base(object):
""" base class for index sub-class tests """
_holder = None
_compat_props = ['shape', 'ndim', 'size', 'itemsize', 'nbytes']
def setup_indices(self):
for name, idx in self.indices.items():
setattr(self, name, idx)
def verify_pickle(self, index):
unpickled = self.round_trip_pickle(index)
self.assertTrue(index.equals(unpickled))
def test_pickle_compat_construction(self):
# this is testing for pickle compat
if self._holder is None:
return
# need an object to create with
self.assertRaises(TypeError, self._holder)
def test_shift(self):
# GH8083 test the base class for shift
idx = self.create_index()
self.assertRaises(NotImplementedError, idx.shift, 1)
self.assertRaises(NotImplementedError, idx.shift, 1, 2)
def test_create_index_existing_name(self):
# GH11193, when an existing index is passed, and a new name is not
# specified, the new index should inherit the previous object name
expected = self.create_index()
if not isinstance(expected, MultiIndex):
expected.name = 'foo'
result = pd.Index(expected)
tm.assert_index_equal(result, expected)
result = pd.Index(expected, name='bar')
expected.name = 'bar'
tm.assert_index_equal(result, expected)
else:
expected.names = ['foo', 'bar']
result = pd.Index(expected)
tm.assert_index_equal(
result, Index(Index([('foo', 'one'), ('foo', 'two'),
('bar', 'one'), ('baz', 'two'),
('qux', 'one'), ('qux', 'two')],
dtype='object'),
names=['foo', 'bar']))
result = pd.Index(expected, names=['A', 'B'])
tm.assert_index_equal(
result,
Index(Index([('foo', 'one'), ('foo', 'two'), ('bar', 'one'),
('baz', 'two'), ('qux', 'one'), ('qux', 'two')],
dtype='object'), names=['A', 'B']))
def test_numeric_compat(self):
idx = self.create_index()
tm.assertRaisesRegexp(TypeError, "cannot perform __mul__",
lambda: idx * 1)
tm.assertRaisesRegexp(TypeError, "cannot perform __mul__",
lambda: 1 * idx)
div_err = "cannot perform __truediv__" if PY3 \
else "cannot perform __div__"
tm.assertRaisesRegexp(TypeError, div_err, lambda: idx / 1)
tm.assertRaisesRegexp(TypeError, div_err, lambda: 1 / idx)
tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__",
lambda: idx // 1)
tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__",
lambda: 1 // idx)
def test_logical_compat(self):
idx = self.create_index()
tm.assertRaisesRegexp(TypeError, 'cannot perform all',
lambda: idx.all())
tm.assertRaisesRegexp(TypeError, 'cannot perform any',
lambda: idx.any())
def test_boolean_context_compat(self):
# boolean context compat
idx = self.create_index()
def f():
if idx:
pass
tm.assertRaisesRegexp(ValueError, 'The truth value of a', f)
def test_reindex_base(self):
idx = self.create_index()
expected = np.arange(idx.size, dtype=np.intp)
actual = idx.get_indexer(idx)
tm.assert_numpy_array_equal(expected, actual)
with tm.assertRaisesRegexp(ValueError, 'Invalid fill method'):
idx.get_indexer(idx, method='invalid')
def test_ndarray_compat_properties(self):
idx = self.create_index()
self.assertTrue(idx.T.equals(idx))
self.assertTrue(idx.transpose().equals(idx))
values = idx.values
for prop in self._compat_props:
self.assertEqual(getattr(idx, prop), getattr(values, prop))
# test for validity
idx.nbytes
idx.values.nbytes
def test_repr_roundtrip(self):
idx = self.create_index()
tm.assert_index_equal(eval(repr(idx)), idx)
def test_str(self):
# test the string repr
idx = self.create_index()
idx.name = 'foo'
self.assertTrue("'foo'" in str(idx))
self.assertTrue(idx.__class__.__name__ in str(idx))
def test_dtype_str(self):
for idx in self.indices.values():
dtype = idx.dtype_str
self.assertIsInstance(dtype, compat.string_types)
self.assertEqual(dtype, str(idx.dtype))
def test_repr_max_seq_item_setting(self):
# GH10182
idx = self.create_index()
idx = idx.repeat(50)
with pd.option_context("display.max_seq_items", None):
repr(idx)
self.assertFalse('...' in str(idx))
def test_wrong_number_names(self):
def testit(ind):
ind.names = ["apple", "banana", "carrot"]
for ind in self.indices.values():
assertRaisesRegexp(ValueError, "^Length", testit, ind)
def test_set_name_methods(self):
new_name = "This is the new name for this index"
for ind in self.indices.values():
# don't tests a MultiIndex here (as its tested separated)
if isinstance(ind, MultiIndex):
continue
original_name = ind.name
new_ind = ind.set_names([new_name])
self.assertEqual(new_ind.name, new_name)
self.assertEqual(ind.name, original_name)
res = ind.rename(new_name, inplace=True)
# should return None
self.assertIsNone(res)
self.assertEqual(ind.name, new_name)
self.assertEqual(ind.names, [new_name])
# with assertRaisesRegexp(TypeError, "list-like"):
# # should still fail even if it would be the right length
# ind.set_names("a")
with assertRaisesRegexp(ValueError, "Level must be None"):
ind.set_names("a", level=0)
# rename in place just leaves tuples and other containers alone
name = ('A', 'B')
ind.rename(name, inplace=True)
self.assertEqual(ind.name, name)
self.assertEqual(ind.names, [name])
def test_hash_error(self):
for ind in self.indices.values():
with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" %
type(ind).__name__):
hash(ind)
def test_copy_name(self):
# Check that "name" argument passed at initialization is honoured
# GH12309
for name, index in compat.iteritems(self.indices):
if isinstance(index, MultiIndex):
continue
first = index.__class__(index, copy=True, name='mario')
second = first.__class__(first, copy=False)
# Even though "copy=False", we want a new object.
self.assertIsNot(first, second)
# Not using tm.assert_index_equal() since names differ:
self.assertTrue(index.equals(first))
self.assertEqual(first.name, 'mario')
self.assertEqual(second.name, 'mario')
s1 = Series(2, index=first)
s2 = Series(3, index=second[:-1])
if not isinstance(index, CategoricalIndex): # See GH13365
s3 = s1 * s2
self.assertEqual(s3.index.name, 'mario')
def test_ensure_copied_data(self):
# Check the "copy" argument of each Index.__new__ is honoured
# GH12309
for name, index in compat.iteritems(self.indices):
init_kwargs = {}
if isinstance(index, PeriodIndex):
# Needs "freq" specification:
init_kwargs['freq'] = index.freq
elif isinstance(index, (RangeIndex, MultiIndex, CategoricalIndex)):
# RangeIndex cannot be initialized from data
# MultiIndex and CategoricalIndex are tested separately
continue
index_type = index.__class__
result = index_type(index.values, copy=True, **init_kwargs)
tm.assert_index_equal(index, result)
tm.assert_numpy_array_equal(index.values, result.values,
check_same='copy')
if not isinstance(index, PeriodIndex):
result = index_type(index.values, copy=False, **init_kwargs)
tm.assert_numpy_array_equal(index.values, result.values,
check_same='same')
tm.assert_numpy_array_equal(index._values, result._values,
check_same='same')
else:
# .values an object array of Period, thus copied
result = index_type(ordinal=index.asi8, copy=False,
**init_kwargs)
tm.assert_numpy_array_equal(index._values, result._values,
check_same='same')
def test_copy_and_deepcopy(self):
from copy import copy, deepcopy
for ind in self.indices.values():
# don't tests a MultiIndex here (as its tested separated)
if isinstance(ind, MultiIndex):
continue
for func in (copy, deepcopy):
idx_copy = func(ind)
self.assertIsNot(idx_copy, ind)
self.assertTrue(idx_copy.equals(ind))
new_copy = ind.copy(deep=True, name="banana")
self.assertEqual(new_copy.name, "banana")
def test_duplicates(self):
for ind in self.indices.values():
if not len(ind):
continue
if isinstance(ind, MultiIndex):
continue
idx = self._holder([ind[0]] * 5)
self.assertFalse(idx.is_unique)
self.assertTrue(idx.has_duplicates)
# GH 10115
# preserve names
idx.name = 'foo'
result = idx.drop_duplicates()
self.assertEqual(result.name, 'foo')
self.assert_index_equal(result, Index([ind[0]], name='foo'))
def test_get_unique_index(self):
for ind in self.indices.values():
# MultiIndex tested separately
if not len(ind) or isinstance(ind, MultiIndex):
continue
idx = ind[[0] * 5]
idx_unique = ind[[0]]
# We test against `idx_unique`, so first we make sure it's unique
# and doesn't contain nans.
self.assertTrue(idx_unique.is_unique)
try:
self.assertFalse(idx_unique.hasnans)
except NotImplementedError:
pass
for dropna in [False, True]:
result = idx._get_unique_index(dropna=dropna)
self.assert_index_equal(result, idx_unique)
# nans:
if not ind._can_hold_na:
continue
if needs_i8_conversion(ind):
vals = ind.asi8[[0] * 5]
vals[0] = pd.tslib.iNaT
else:
vals = ind.values[[0] * 5]
vals[0] = np.nan
vals_unique = vals[:2]
idx_nan = ind._shallow_copy(vals)
idx_unique_nan = ind._shallow_copy(vals_unique)
self.assertTrue(idx_unique_nan.is_unique)
self.assertEqual(idx_nan.dtype, ind.dtype)
self.assertEqual(idx_unique_nan.dtype, ind.dtype)
for dropna, expected in zip([False, True],
[idx_unique_nan, idx_unique]):
for i in [idx_nan, idx_unique_nan]:
result = i._get_unique_index(dropna=dropna)
self.assert_index_equal(result, expected)
def test_sort(self):
for ind in self.indices.values():
self.assertRaises(TypeError, ind.sort)
def test_order(self):
for ind in self.indices.values():
# 9816 deprecated
with tm.assert_produces_warning(FutureWarning):
ind.order()
def test_mutability(self):
for ind in self.indices.values():
if not len(ind):
continue
self.assertRaises(TypeError, ind.__setitem__, 0, ind[0])
def test_view(self):
for ind in self.indices.values():
i_view = ind.view()
self.assertEqual(i_view.name, ind.name)
def test_compat(self):
for ind in self.indices.values():
self.assertEqual(ind.tolist(), list(ind))
def test_argsort(self):
for k, ind in self.indices.items():
# separately tested
if k in ['catIndex']:
continue
result = ind.argsort()
expected = np.array(ind).argsort()
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
def test_numpy_argsort(self):
for k, ind in self.indices.items():
result = np.argsort(ind)
expected = ind.argsort()
tm.assert_numpy_array_equal(result, expected)
# these are the only two types that perform
# pandas compatibility input validation - the
# rest already perform separate (or no) such
# validation via their 'values' attribute as
# defined in pandas/indexes/base.py - they
# cannot be changed at the moment due to
# backwards compatibility concerns
if isinstance(type(ind), (CategoricalIndex, RangeIndex)):
msg = "the 'axis' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg,
np.argsort, ind, axis=1)
msg = "the 'kind' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, np.argsort,
ind, kind='mergesort')
msg = "the 'order' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, np.argsort,
ind, order=('a', 'b'))
def test_pickle(self):
for ind in self.indices.values():
self.verify_pickle(ind)
ind.name = 'foo'
self.verify_pickle(ind)
def test_take(self):
indexer = [4, 3, 0, 2]
for k, ind in self.indices.items():
# separate
if k in ['boolIndex', 'tuples', 'empty']:
continue
result = ind.take(indexer)
expected = ind[indexer]
self.assertTrue(result.equals(expected))
if not isinstance(ind,
(DatetimeIndex, PeriodIndex, TimedeltaIndex)):
# GH 10791
with tm.assertRaises(AttributeError):
ind.freq
def test_take_invalid_kwargs(self):
idx = self.create_index()
indices = [1, 2]
msg = "take\(\) got an unexpected keyword argument 'foo'"
tm.assertRaisesRegexp(TypeError, msg, idx.take,
indices, foo=2)
msg = "the 'out' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, idx.take,
indices, out=indices)
msg = "the 'mode' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, idx.take,
indices, mode='clip')
def test_repeat(self):
rep = 2
i = self.create_index()
expected = pd.Index(i.values.repeat(rep), name=i.name)
tm.assert_index_equal(i.repeat(rep), expected)
i = self.create_index()
rep = np.arange(len(i))
expected = pd.Index(i.values.repeat(rep), name=i.name)
tm.assert_index_equal(i.repeat(rep), expected)
def test_numpy_repeat(self):
rep = 2
i = self.create_index()
expected = i.repeat(rep)
tm.assert_index_equal(np.repeat(i, rep), expected)
msg = "the 'axis' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, np.repeat,
i, rep, axis=0)
def test_where(self):
i = self.create_index()
result = i.where(notnull(i))
expected = i
tm.assert_index_equal(result, expected)
i2 = i.copy()
i2 = pd.Index([np.nan, np.nan] + i[2:].tolist())
result = i.where(notnull(i2))
expected = i2
tm.assert_index_equal(result, expected)
def test_setops_errorcases(self):
for name, idx in compat.iteritems(self.indices):
# # non-iterable input
cases = [0.5, 'xxx']
methods = [idx.intersection, idx.union, idx.difference,
idx.symmetric_difference]
for method in methods:
for case in cases:
assertRaisesRegexp(TypeError,
"Input must be Index or array-like",
method, case)
def test_intersection_base(self):
for name, idx in compat.iteritems(self.indices):
first = idx[:5]
second = idx[:3]
intersect = first.intersection(second)
if isinstance(idx, CategoricalIndex):
pass
else:
self.assertTrue(tm.equalContents(intersect, second))
# GH 10149
cases = [klass(second.values)
for klass in [np.array, Series, list]]
for case in cases:
if isinstance(idx, PeriodIndex):
msg = "can only call with other PeriodIndex-ed objects"
with tm.assertRaisesRegexp(ValueError, msg):
result = first.intersection(case)
elif isinstance(idx, CategoricalIndex):
pass
else:
result = first.intersection(case)
self.assertTrue(tm.equalContents(result, second))
if isinstance(idx, MultiIndex):
msg = "other must be a MultiIndex or a list of tuples"
with tm.assertRaisesRegexp(TypeError, msg):
result = first.intersection([1, 2, 3])
def test_union_base(self):
for name, idx in compat.iteritems(self.indices):
first = idx[3:]
second = idx[:5]
everything = idx
union = first.union(second)
self.assertTrue(tm.equalContents(union, everything))
# GH 10149
cases = [klass(second.values)
for klass in [np.array, Series, list]]
for case in cases:
if isinstance(idx, PeriodIndex):
msg = "can only call with other PeriodIndex-ed objects"
with tm.assertRaisesRegexp(ValueError, msg):
result = first.union(case)
elif isinstance(idx, CategoricalIndex):
pass
else:
result = first.union(case)
self.assertTrue(tm.equalContents(result, everything))
if isinstance(idx, MultiIndex):
msg = "other must be a MultiIndex or a list of tuples"
with tm.assertRaisesRegexp(TypeError, msg):
result = first.union([1, 2, 3])
def test_difference_base(self):
for name, idx in compat.iteritems(self.indices):
first = idx[2:]
second = idx[:4]
answer = idx[4:]
result = first.difference(second)
if isinstance(idx, CategoricalIndex):
pass
else:
self.assertTrue(tm.equalContents(result, answer))
# GH 10149
cases = [klass(second.values)
for klass in [np.array, Series, list]]
for case in cases:
if isinstance(idx, PeriodIndex):
msg = "can only call with other PeriodIndex-ed objects"
with tm.assertRaisesRegexp(ValueError, msg):
result = first.difference(case)
elif isinstance(idx, CategoricalIndex):
pass
elif isinstance(idx, (DatetimeIndex, TimedeltaIndex)):
self.assertEqual(result.__class__, answer.__class__)
tm.assert_numpy_array_equal(result.asi8, answer.asi8)
else:
result = first.difference(case)
self.assertTrue(tm.equalContents(result, answer))
if isinstance(idx, MultiIndex):
msg = "other must be a MultiIndex or a list of tuples"
with tm.assertRaisesRegexp(TypeError, msg):
result = first.difference([1, 2, 3])
def test_symmetric_difference(self):
for name, idx in compat.iteritems(self.indices):
first = idx[1:]
second = idx[:-1]
if isinstance(idx, CategoricalIndex):
pass
else:
answer = idx[[0, -1]]
result = first.symmetric_difference(second)
self.assertTrue(tm.equalContents(result, answer))
# GH 10149
cases = [klass(second.values)
for klass in [np.array, Series, list]]
for case in cases:
if isinstance(idx, PeriodIndex):
msg = "can only call with other PeriodIndex-ed objects"
with tm.assertRaisesRegexp(ValueError, msg):
result = first.symmetric_difference(case)
elif isinstance(idx, CategoricalIndex):
pass
else:
result = first.symmetric_difference(case)
self.assertTrue(tm.equalContents(result, answer))
if isinstance(idx, MultiIndex):
msg = "other must be a MultiIndex or a list of tuples"
with tm.assertRaisesRegexp(TypeError, msg):
result = first.symmetric_difference([1, 2, 3])
# 12591 deprecated
with tm.assert_produces_warning(FutureWarning):
first.sym_diff(second)
def test_insert_base(self):
for name, idx in compat.iteritems(self.indices):
result = idx[1:4]
if not len(idx):
continue
# test 0th element
self.assertTrue(idx[0:4].equals(result.insert(0, idx[0])))
def test_delete_base(self):
for name, idx in compat.iteritems(self.indices):
if not len(idx):
continue
if isinstance(idx, RangeIndex):
# tested in class
continue
expected = idx[1:]
result = idx.delete(0)
self.assertTrue(result.equals(expected))
self.assertEqual(result.name, expected.name)
expected = idx[:-1]
result = idx.delete(-1)
self.assertTrue(result.equals(expected))
self.assertEqual(result.name, expected.name)
with tm.assertRaises((IndexError, ValueError)):
# either depending on numpy version
result = idx.delete(len(idx))
def test_equals(self):
for name, idx in compat.iteritems(self.indices):
self.assertTrue(idx.equals(idx))
self.assertTrue(idx.equals(idx.copy()))
self.assertTrue(idx.equals(idx.astype(object)))
self.assertFalse(idx.equals(list(idx)))
self.assertFalse(idx.equals(np.array(idx)))
if idx.nlevels == 1:
# do not test MultiIndex
self.assertFalse(idx.equals(pd.Series(idx)))
def test_equals_op(self):
# GH9947, GH10637
index_a = self.create_index()
if isinstance(index_a, PeriodIndex):
return
n = len(index_a)
index_b = index_a[0:-1]
index_c = index_a[0:-1].append(index_a[-2:-1])
index_d = index_a[0:1]
with tm.assertRaisesRegexp(ValueError, "Lengths must match"):
index_a == index_b
expected1 = np.array([True] * n)
expected2 = np.array([True] * (n - 1) + [False])
tm.assert_numpy_array_equal(index_a == index_a, expected1)
tm.assert_numpy_array_equal(index_a == index_c, expected2)
# test comparisons with numpy arrays
array_a = np.array(index_a)
array_b = np.array(index_a[0:-1])
array_c = np.array(index_a[0:-1].append(index_a[-2:-1]))
array_d = np.array(index_a[0:1])
with tm.assertRaisesRegexp(ValueError, "Lengths must match"):
index_a == array_b
tm.assert_numpy_array_equal(index_a == array_a, expected1)
tm.assert_numpy_array_equal(index_a == array_c, expected2)
# test comparisons with Series
series_a = Series(array_a)
series_b = Series(array_b)
series_c = Series(array_c)
series_d = Series(array_d)
with tm.assertRaisesRegexp(ValueError, "Lengths must match"):
index_a == series_b
tm.assert_numpy_array_equal(index_a == series_a, expected1)
tm.assert_numpy_array_equal(index_a == series_c, expected2)
# cases where length is 1 for one of them
with tm.assertRaisesRegexp(ValueError, "Lengths must match"):
index_a == index_d
with tm.assertRaisesRegexp(ValueError, "Lengths must match"):
index_a == series_d
with tm.assertRaisesRegexp(ValueError, "Lengths must match"):
index_a == array_d
msg = "Can only compare identically-labeled Series objects"
with tm.assertRaisesRegexp(ValueError, msg):
series_a == series_d
with tm.assertRaisesRegexp(ValueError, "Lengths must match"):
series_a == array_d
# comparing with a scalar should broadcast; note that we are excluding
# MultiIndex because in this case each item in the index is a tuple of
# length 2, and therefore is considered an array of length 2 in the
# comparison instead of a scalar
if not isinstance(index_a, MultiIndex):
expected3 = np.array([False] * (len(index_a) - 2) + [True, False])
# assuming the 2nd to last item is unique in the data
item = index_a[-2]
tm.assert_numpy_array_equal(index_a == item, expected3)
tm.assert_series_equal(series_a == item, Series(expected3))
def test_numpy_ufuncs(self):
# test ufuncs of numpy 1.9.2. see:
# http://docs.scipy.org/doc/numpy/reference/ufuncs.html
# some functions are skipped because it may return different result
# for unicode input depending on numpy version
for name, idx in compat.iteritems(self.indices):
for func in [np.exp, np.exp2, np.expm1, np.log, np.log2, np.log10,
np.log1p, np.sqrt, np.sin, np.cos, np.tan, np.arcsin,
np.arccos, np.arctan, np.sinh, np.cosh, np.tanh,
np.arcsinh, np.arccosh, np.arctanh, np.deg2rad,
np.rad2deg]:
if isinstance(idx, pd.tseries.base.DatetimeIndexOpsMixin):
# raise TypeError or ValueError (PeriodIndex)
# PeriodIndex behavior should be changed in future version
with tm.assertRaises(Exception):
with np.errstate(all='ignore'):
func(idx)
elif isinstance(idx, (Float64Index, Int64Index)):
# coerces to float (e.g. np.sin)
with np.errstate(all='ignore'):
result = func(idx)
exp = Index(func(idx.values), name=idx.name)
self.assert_index_equal(result, exp)
self.assertIsInstance(result, pd.Float64Index)
else:
# raise AttributeError or TypeError
if len(idx) == 0:
continue
else:
with tm.assertRaises(Exception):
with np.errstate(all='ignore'):
func(idx)
for func in [np.isfinite, np.isinf, np.isnan, np.signbit]:
if isinstance(idx, pd.tseries.base.DatetimeIndexOpsMixin):
# raise TypeError or ValueError (PeriodIndex)
with tm.assertRaises(Exception):
func(idx)
elif isinstance(idx, (Float64Index, Int64Index)):
# results in bool array
result = func(idx)
exp = func(idx.values)
self.assertIsInstance(result, np.ndarray)
tm.assertNotIsInstance(result, Index)
else:
if len(idx) == 0:
continue
else:
with tm.assertRaises(Exception):
func(idx)
def test_hasnans_isnans(self):
# GH 11343, added tests for hasnans / isnans
for name, index in self.indices.items():
if isinstance(index, MultiIndex):
pass
else:
idx = index.copy()
# cases in indices doesn't include NaN
expected = np.array([False] * len(idx), dtype=bool)
self.assert_numpy_array_equal(idx._isnan, expected)
self.assertFalse(idx.hasnans)
idx = index.copy()
values = idx.values
if len(index) == 0:
continue
elif isinstance(index, pd.tseries.base.DatetimeIndexOpsMixin):
values[1] = pd.tslib.iNaT
elif isinstance(index, Int64Index):
continue
else:
values[1] = np.nan
if isinstance(index, PeriodIndex):
idx = index.__class__(values, freq=index.freq)
else:
idx = index.__class__(values)
expected = np.array([False] * len(idx), dtype=bool)
expected[1] = True
self.assert_numpy_array_equal(idx._isnan, expected)
self.assertTrue(idx.hasnans)
def test_fillna(self):
# GH 11343
for name, index in self.indices.items():
if len(index) == 0:
pass
elif isinstance(index, MultiIndex):
idx = index.copy()
msg = "isnull is not defined for MultiIndex"
with self.assertRaisesRegexp(NotImplementedError, msg):
idx.fillna(idx[0])
else:
idx = index.copy()
result = idx.fillna(idx[0])
self.assert_index_equal(result, idx)
self.assertFalse(result is idx)
msg = "'value' must be a scalar, passed: "
with self.assertRaisesRegexp(TypeError, msg):
idx.fillna([idx[0]])
idx = index.copy()
values = idx.values
if isinstance(index, pd.tseries.base.DatetimeIndexOpsMixin):
values[1] = pd.tslib.iNaT
elif isinstance(index, Int64Index):
continue
else:
values[1] = np.nan
if isinstance(index, PeriodIndex):
idx = index.__class__(values, freq=index.freq)
else:
idx = index.__class__(values)
expected = np.array([False] * len(idx), dtype=bool)
expected[1] = True
self.assert_numpy_array_equal(idx._isnan, expected)
self.assertTrue(idx.hasnans)