forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_indexing.py
1102 lines (898 loc) · 39.7 KB
/
test_indexing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# pylint: disable-msg=W0612,E1101
""" test fancy indexing & misc """
from datetime import datetime
from warnings import catch_warnings, simplefilter
import weakref
import numpy as np
import pytest
from pandas.compat import lrange, range
from pandas.core.dtypes.common import is_float_dtype, is_integer_dtype
import pandas as pd
from pandas import DataFrame, Index, NaT, Series
from pandas.core.indexing import (
_maybe_numeric_slice, _non_reducing_slice, validate_indices)
from pandas.tests.indexing.common import Base, _mklbl
import pandas.util.testing as tm
ignore_ix = pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning")
# ------------------------------------------------------------------------
# Indexing test cases
class TestFancy(Base):
""" pure get/set item & fancy indexing """
def test_setitem_ndarray_1d(self):
# GH5508
# len of indexer vs length of the 1d ndarray
df = DataFrame(index=Index(lrange(1, 11)))
df['foo'] = np.zeros(10, dtype=np.float64)
df['bar'] = np.zeros(10, dtype=np.complex)
# invalid
with pytest.raises(ValueError):
df.loc[df.index[2:5], 'bar'] = np.array([2.33j, 1.23 + 0.1j,
2.2, 1.0])
# valid
df.loc[df.index[2:6], 'bar'] = np.array([2.33j, 1.23 + 0.1j,
2.2, 1.0])
result = df.loc[df.index[2:6], 'bar']
expected = Series([2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6],
name='bar')
tm.assert_series_equal(result, expected)
# dtype getting changed?
df = DataFrame(index=Index(lrange(1, 11)))
df['foo'] = np.zeros(10, dtype=np.float64)
df['bar'] = np.zeros(10, dtype=np.complex)
with pytest.raises(ValueError):
df[2:5] = np.arange(1, 4) * 1j
@pytest.mark.parametrize('index', tm.all_index_generator(5),
ids=lambda x: type(x).__name__)
@pytest.mark.parametrize('obj', [
lambda i: Series(np.arange(len(i)), index=i),
lambda i: DataFrame(
np.random.randn(len(i), len(i)), index=i, columns=i)
], ids=['Series', 'DataFrame'])
@pytest.mark.parametrize('idxr, idxr_id', [
(lambda x: x, 'getitem'),
(lambda x: x.loc, 'loc'),
(lambda x: x.iloc, 'iloc'),
pytest.param(lambda x: x.ix, 'ix', marks=ignore_ix)
])
def test_getitem_ndarray_3d(self, index, obj, idxr, idxr_id):
# GH 25567
obj = obj(index)
idxr = idxr(obj)
nd3 = np.random.randint(5, size=(2, 2, 2))
msg = (r"Buffer has wrong number of dimensions \(expected 1,"
r" got 3\)|"
"The truth value of an array with more than one element is"
" ambiguous|"
"Cannot index with multidimensional key|"
r"Wrong number of dimensions. values.ndim != ndim \[3 != 1\]|"
"unhashable type: 'numpy.ndarray'" # TypeError
)
if (isinstance(obj, Series) and idxr_id == 'getitem'
and index.inferred_type in [
'string', 'datetime64', 'period', 'timedelta64',
'boolean', 'categorical']):
idxr[nd3]
else:
if (isinstance(obj, DataFrame) and idxr_id == 'getitem'
and index.inferred_type == 'boolean'):
error = TypeError
else:
error = ValueError
with pytest.raises(error, match=msg):
idxr[nd3]
@pytest.mark.parametrize('index', tm.all_index_generator(5),
ids=lambda x: type(x).__name__)
@pytest.mark.parametrize('obj', [
lambda i: Series(np.arange(len(i)), index=i),
lambda i: DataFrame(
np.random.randn(len(i), len(i)), index=i, columns=i)
], ids=['Series', 'DataFrame'])
@pytest.mark.parametrize('idxr, idxr_id', [
(lambda x: x, 'setitem'),
(lambda x: x.loc, 'loc'),
(lambda x: x.iloc, 'iloc'),
pytest.param(lambda x: x.ix, 'ix', marks=ignore_ix)
])
def test_setitem_ndarray_3d(self, index, obj, idxr, idxr_id):
# GH 25567
obj = obj(index)
idxr = idxr(obj)
nd3 = np.random.randint(5, size=(2, 2, 2))
msg = (r"Buffer has wrong number of dimensions \(expected 1,"
r" got 3\)|"
"The truth value of an array with more than one element is"
" ambiguous|"
"Only 1-dimensional input arrays are supported|"
"'pandas._libs.interval.IntervalTree' object has no attribute"
" 'set_value'|" # AttributeError
"unhashable type: 'numpy.ndarray'|" # TypeError
r"^\[\[\[" # pandas.core.indexing.IndexingError
)
if ((idxr_id == 'iloc')
or ((isinstance(obj, Series) and idxr_id == 'setitem'
and index.inferred_type in [
'floating', 'string', 'datetime64', 'period', 'timedelta64',
'boolean', 'categorical']))
or (idxr_id == 'ix' and index.inferred_type in [
'string', 'datetime64', 'period', 'boolean'])):
idxr[nd3] = 0
else:
with pytest.raises(
(ValueError, AttributeError, TypeError,
pd.core.indexing.IndexingError), match=msg):
idxr[nd3] = 0
def test_inf_upcast(self):
# GH 16957
# We should be able to use np.inf as a key
# np.inf should cause an index to convert to float
# Test with np.inf in rows
df = DataFrame(columns=[0])
df.loc[1] = 1
df.loc[2] = 2
df.loc[np.inf] = 3
# make sure we can look up the value
assert df.loc[np.inf, 0] == 3
result = df.index
expected = pd.Float64Index([1, 2, np.inf])
tm.assert_index_equal(result, expected)
# Test with np.inf in columns
df = DataFrame()
df.loc[0, 0] = 1
df.loc[1, 1] = 2
df.loc[0, np.inf] = 3
result = df.columns
expected = pd.Float64Index([0, 1, np.inf])
tm.assert_index_equal(result, expected)
def test_setitem_dtype_upcast(self):
# GH3216
df = DataFrame([{"a": 1}, {"a": 3, "b": 2}])
df['c'] = np.nan
assert df['c'].dtype == np.float64
df.loc[0, 'c'] = 'foo'
expected = DataFrame([{"a": 1, "c": 'foo'},
{"a": 3, "b": 2, "c": np.nan}])
tm.assert_frame_equal(df, expected)
# GH10280
df = DataFrame(np.arange(6, dtype='int64').reshape(2, 3),
index=list('ab'),
columns=['foo', 'bar', 'baz'])
for val in [3.14, 'wxyz']:
left = df.copy()
left.loc['a', 'bar'] = val
right = DataFrame([[0, val, 2], [3, 4, 5]], index=list('ab'),
columns=['foo', 'bar', 'baz'])
tm.assert_frame_equal(left, right)
assert is_integer_dtype(left['foo'])
assert is_integer_dtype(left['baz'])
left = DataFrame(np.arange(6, dtype='int64').reshape(2, 3) / 10.0,
index=list('ab'),
columns=['foo', 'bar', 'baz'])
left.loc['a', 'bar'] = 'wxyz'
right = DataFrame([[0, 'wxyz', .2], [.3, .4, .5]], index=list('ab'),
columns=['foo', 'bar', 'baz'])
tm.assert_frame_equal(left, right)
assert is_float_dtype(left['foo'])
assert is_float_dtype(left['baz'])
def test_dups_fancy_indexing(self):
# GH 3455
from pandas.util.testing import makeCustomDataframe as mkdf
df = mkdf(10, 3)
df.columns = ['a', 'a', 'b']
result = df[['b', 'a']].columns
expected = Index(['b', 'a', 'a'])
tm.assert_index_equal(result, expected)
# across dtypes
df = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']],
columns=list('aaaaaaa'))
df.head()
str(df)
result = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']])
result.columns = list('aaaaaaa')
# TODO(wesm): unused?
df_v = df.iloc[:, 4] # noqa
res_v = result.iloc[:, 4] # noqa
tm.assert_frame_equal(df, result)
# GH 3561, dups not in selected order
df = DataFrame(
{'test': [5, 7, 9, 11],
'test1': [4., 5, 6, 7],
'other': list('abcd')}, index=['A', 'A', 'B', 'C'])
rows = ['C', 'B']
expected = DataFrame(
{'test': [11, 9],
'test1': [7., 6],
'other': ['d', 'c']}, index=rows)
result = df.loc[rows]
tm.assert_frame_equal(result, expected)
result = df.loc[Index(rows)]
tm.assert_frame_equal(result, expected)
rows = ['C', 'B', 'E']
expected = DataFrame(
{'test': [11, 9, np.nan],
'test1': [7., 6, np.nan],
'other': ['d', 'c', np.nan]}, index=rows)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = df.loc[rows]
tm.assert_frame_equal(result, expected)
# see GH5553, make sure we use the right indexer
rows = ['F', 'G', 'H', 'C', 'B', 'E']
expected = DataFrame({'test': [np.nan, np.nan, np.nan, 11, 9, np.nan],
'test1': [np.nan, np.nan, np.nan, 7., 6, np.nan],
'other': [np.nan, np.nan, np.nan,
'd', 'c', np.nan]},
index=rows)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = df.loc[rows]
tm.assert_frame_equal(result, expected)
# List containing only missing label
dfnu = DataFrame(np.random.randn(5, 3), index=list('AABCD'))
with pytest.raises(KeyError):
dfnu.loc[['E']]
# ToDo: check_index_type can be True after GH 11497
# GH 4619; duplicate indexer with missing label
df = DataFrame({"A": [0, 1, 2]})
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = df.loc[[0, 8, 0]]
expected = DataFrame({"A": [0, np.nan, 0]}, index=[0, 8, 0])
tm.assert_frame_equal(result, expected, check_index_type=False)
df = DataFrame({"A": list('abc')})
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = df.loc[[0, 8, 0]]
expected = DataFrame({"A": ['a', np.nan, 'a']}, index=[0, 8, 0])
tm.assert_frame_equal(result, expected, check_index_type=False)
# non unique with non unique selector
df = DataFrame({'test': [5, 7, 9, 11]}, index=['A', 'A', 'B', 'C'])
expected = DataFrame(
{'test': [5, 7, 5, 7, np.nan]}, index=['A', 'A', 'A', 'A', 'E'])
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = df.loc[['A', 'A', 'E']]
tm.assert_frame_equal(result, expected)
def test_dups_fancy_indexing2(self):
# GH 5835
# dups on index and missing values
df = DataFrame(
np.random.randn(5, 5), columns=['A', 'B', 'B', 'B', 'A'])
expected = pd.concat(
[df.loc[:, ['A', 'B']], DataFrame(np.nan, columns=['C'],
index=df.index)], axis=1)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = df.loc[:, ['A', 'B', 'C']]
tm.assert_frame_equal(result, expected)
# GH 6504, multi-axis indexing
df = DataFrame(np.random.randn(9, 2),
index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=['a', 'b'])
expected = df.iloc[0:6]
result = df.loc[[1, 2]]
tm.assert_frame_equal(result, expected)
expected = df
result = df.loc[:, ['a', 'b']]
tm.assert_frame_equal(result, expected)
expected = df.iloc[0:6, :]
result = df.loc[[1, 2], ['a', 'b']]
tm.assert_frame_equal(result, expected)
def test_indexing_mixed_frame_bug(self):
# GH3492
df = DataFrame({'a': {1: 'aaa', 2: 'bbb', 3: 'ccc'},
'b': {1: 111, 2: 222, 3: 333}})
# this works, new column is created correctly
df['test'] = df['a'].apply(lambda x: '_' if x == 'aaa' else x)
# this does not work, ie column test is not changed
idx = df['test'] == '_'
temp = df.loc[idx, 'a'].apply(lambda x: '-----' if x == 'aaa' else x)
df.loc[idx, 'test'] = temp
assert df.iloc[0, 2] == '-----'
# if I look at df, then element [0,2] equals '_'. If instead I type
# df.ix[idx,'test'], I get '-----', finally by typing df.iloc[0,2] I
# get '_'.
def test_multitype_list_index_access(self):
# GH 10610
df = DataFrame(np.random.random((10, 5)),
columns=["a"] + [20, 21, 22, 23])
with pytest.raises(KeyError):
df[[22, 26, -8]]
assert df[21].shape[0] == df.shape[0]
def test_set_index_nan(self):
# GH 3586
df = DataFrame({'PRuid': {17: 'nonQC',
18: 'nonQC',
19: 'nonQC',
20: '10',
21: '11',
22: '12',
23: '13',
24: '24',
25: '35',
26: '46',
27: '47',
28: '48',
29: '59',
30: '10'},
'QC': {17: 0.0,
18: 0.0,
19: 0.0,
20: np.nan,
21: np.nan,
22: np.nan,
23: np.nan,
24: 1.0,
25: np.nan,
26: np.nan,
27: np.nan,
28: np.nan,
29: np.nan,
30: np.nan},
'data': {17: 7.9544899999999998,
18: 8.0142609999999994,
19: 7.8591520000000008,
20: 0.86140349999999999,
21: 0.87853110000000001,
22: 0.8427041999999999,
23: 0.78587700000000005,
24: 0.73062459999999996,
25: 0.81668560000000001,
26: 0.81927080000000008,
27: 0.80705009999999999,
28: 0.81440240000000008,
29: 0.80140849999999997,
30: 0.81307740000000006},
'year': {17: 2006,
18: 2007,
19: 2008,
20: 1985,
21: 1985,
22: 1985,
23: 1985,
24: 1985,
25: 1985,
26: 1985,
27: 1985,
28: 1985,
29: 1985,
30: 1986}}).reset_index()
result = df.set_index(['year', 'PRuid', 'QC']).reset_index().reindex(
columns=df.columns)
tm.assert_frame_equal(result, df)
def test_multi_assign(self):
# GH 3626, an assignment of a sub-df to a df
df = DataFrame({'FC': ['a', 'b', 'a', 'b', 'a', 'b'],
'PF': [0, 0, 0, 0, 1, 1],
'col1': lrange(6),
'col2': lrange(6, 12)})
df.iloc[1, 0] = np.nan
df2 = df.copy()
mask = ~df2.FC.isna()
cols = ['col1', 'col2']
dft = df2 * 2
dft.iloc[3, 3] = np.nan
expected = DataFrame({'FC': ['a', np.nan, 'a', 'b', 'a', 'b'],
'PF': [0, 0, 0, 0, 1, 1],
'col1': Series([0, 1, 4, 6, 8, 10]),
'col2': [12, 7, 16, np.nan, 20, 22]})
# frame on rhs
df2.loc[mask, cols] = dft.loc[mask, cols]
tm.assert_frame_equal(df2, expected)
df2.loc[mask, cols] = dft.loc[mask, cols]
tm.assert_frame_equal(df2, expected)
# with an ndarray on rhs
# coerces to float64 because values has float64 dtype
# GH 14001
expected = DataFrame({'FC': ['a', np.nan, 'a', 'b', 'a', 'b'],
'PF': [0, 0, 0, 0, 1, 1],
'col1': [0., 1., 4., 6., 8., 10.],
'col2': [12, 7, 16, np.nan, 20, 22]})
df2 = df.copy()
df2.loc[mask, cols] = dft.loc[mask, cols].values
tm.assert_frame_equal(df2, expected)
df2.loc[mask, cols] = dft.loc[mask, cols].values
tm.assert_frame_equal(df2, expected)
# broadcasting on the rhs is required
df = DataFrame(dict(A=[1, 2, 0, 0, 0], B=[0, 0, 0, 10, 11], C=[
0, 0, 0, 10, 11], D=[3, 4, 5, 6, 7]))
expected = df.copy()
mask = expected['A'] == 0
for col in ['A', 'B']:
expected.loc[mask, col] = df['D']
df.loc[df['A'] == 0, ['A', 'B']] = df['D']
tm.assert_frame_equal(df, expected)
def test_setitem_list(self):
# GH 6043
# ix with a list
df = DataFrame(index=[0, 1], columns=[0])
with catch_warnings(record=True):
simplefilter("ignore")
df.ix[1, 0] = [1, 2, 3]
df.ix[1, 0] = [1, 2]
result = DataFrame(index=[0, 1], columns=[0])
with catch_warnings(record=True):
simplefilter("ignore")
result.ix[1, 0] = [1, 2]
tm.assert_frame_equal(result, df)
# ix with an object
class TO(object):
def __init__(self, value):
self.value = value
def __str__(self):
return "[{0}]".format(self.value)
__repr__ = __str__
def __eq__(self, other):
return self.value == other.value
def view(self):
return self
df = DataFrame(index=[0, 1], columns=[0])
with catch_warnings(record=True):
simplefilter("ignore")
df.ix[1, 0] = TO(1)
df.ix[1, 0] = TO(2)
result = DataFrame(index=[0, 1], columns=[0])
with catch_warnings(record=True):
simplefilter("ignore")
result.ix[1, 0] = TO(2)
tm.assert_frame_equal(result, df)
# remains object dtype even after setting it back
df = DataFrame(index=[0, 1], columns=[0])
with catch_warnings(record=True):
simplefilter("ignore")
df.ix[1, 0] = TO(1)
df.ix[1, 0] = np.nan
result = DataFrame(index=[0, 1], columns=[0])
tm.assert_frame_equal(result, df)
def test_string_slice(self):
# GH 14424
# string indexing against datetimelike with object
# dtype should properly raises KeyError
df = DataFrame([1], Index([pd.Timestamp('2011-01-01')], dtype=object))
assert df.index.is_all_dates
with pytest.raises(KeyError):
df['2011']
with pytest.raises(KeyError):
df.loc['2011', 0]
df = DataFrame()
assert not df.index.is_all_dates
with pytest.raises(KeyError):
df['2011']
with pytest.raises(KeyError):
df.loc['2011', 0]
def test_astype_assignment(self):
# GH4312 (iloc)
df_orig = DataFrame([['1', '2', '3', '.4', 5, 6., 'foo']],
columns=list('ABCDEFG'))
df = df_orig.copy()
df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64)
expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']],
columns=list('ABCDEFG'))
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.iloc[:, 0:2] = df.iloc[:, 0:2]._convert(datetime=True, numeric=True)
expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']],
columns=list('ABCDEFG'))
tm.assert_frame_equal(df, expected)
# GH5702 (loc)
df = df_orig.copy()
df.loc[:, 'A'] = df.loc[:, 'A'].astype(np.int64)
expected = DataFrame([[1, '2', '3', '.4', 5, 6., 'foo']],
columns=list('ABCDEFG'))
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc[:, ['B', 'C']] = df.loc[:, ['B', 'C']].astype(np.int64)
expected = DataFrame([['1', 2, 3, '.4', 5, 6., 'foo']],
columns=list('ABCDEFG'))
tm.assert_frame_equal(df, expected)
# full replacements / no nans
df = DataFrame({'A': [1., 2., 3., 4.]})
df.iloc[:, 0] = df['A'].astype(np.int64)
expected = DataFrame({'A': [1, 2, 3, 4]})
tm.assert_frame_equal(df, expected)
df = DataFrame({'A': [1., 2., 3., 4.]})
df.loc[:, 'A'] = df['A'].astype(np.int64)
expected = DataFrame({'A': [1, 2, 3, 4]})
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("index,val", [
(Index([0, 1, 2]), 2),
(Index([0, 1, '2']), '2'),
(Index([0, 1, 2, np.inf, 4]), 4),
(Index([0, 1, 2, np.nan, 4]), 4),
(Index([0, 1, 2, np.inf]), np.inf),
(Index([0, 1, 2, np.nan]), np.nan),
])
def test_index_contains(self, index, val):
assert val in index
@pytest.mark.parametrize("index,val", [
(Index([0, 1, 2]), '2'),
(Index([0, 1, '2']), 2),
(Index([0, 1, 2, np.inf]), 4),
(Index([0, 1, 2, np.nan]), 4),
(Index([0, 1, 2, np.inf]), np.nan),
(Index([0, 1, 2, np.nan]), np.inf),
# Checking if np.inf in Int64Index should not cause an OverflowError
# Related to GH 16957
(pd.Int64Index([0, 1, 2]), np.inf),
(pd.Int64Index([0, 1, 2]), np.nan),
(pd.UInt64Index([0, 1, 2]), np.inf),
(pd.UInt64Index([0, 1, 2]), np.nan),
])
def test_index_not_contains(self, index, val):
assert val not in index
@pytest.mark.parametrize("index,val", [
(Index([0, 1, '2']), 0),
(Index([0, 1, '2']), '2'),
])
def test_mixed_index_contains(self, index, val):
# GH 19860
assert val in index
@pytest.mark.parametrize("index,val", [
(Index([0, 1, '2']), '1'),
(Index([0, 1, '2']), 2),
])
def test_mixed_index_not_contains(self, index, val):
# GH 19860
assert val not in index
def test_contains_with_float_index(self):
# GH#22085
integer_index = pd.Int64Index([0, 1, 2, 3])
uinteger_index = pd.UInt64Index([0, 1, 2, 3])
float_index = pd.Float64Index([0.1, 1.1, 2.2, 3.3])
for index in (integer_index, uinteger_index):
assert 1.1 not in index
assert 1.0 in index
assert 1 in index
assert 1.1 in float_index
assert 1.0 not in float_index
assert 1 not in float_index
def test_index_type_coercion(self):
with catch_warnings(record=True):
simplefilter("ignore")
# GH 11836
# if we have an index type and set it with something that looks
# to numpy like the same, but is actually, not
# (e.g. setting with a float or string '0')
# then we need to coerce to object
# integer indexes
for s in [Series(range(5)),
Series(range(5), index=range(1, 6))]:
assert s.index.is_integer()
for indexer in [lambda x: x.ix,
lambda x: x.loc,
lambda x: x]:
s2 = s.copy()
indexer(s2)[0.1] = 0
assert s2.index.is_floating()
assert indexer(s2)[0.1] == 0
s2 = s.copy()
indexer(s2)[0.0] = 0
exp = s.index
if 0 not in s:
exp = Index(s.index.tolist() + [0])
tm.assert_index_equal(s2.index, exp)
s2 = s.copy()
indexer(s2)['0'] = 0
assert s2.index.is_object()
for s in [Series(range(5), index=np.arange(5.))]:
assert s.index.is_floating()
for idxr in [lambda x: x.ix,
lambda x: x.loc,
lambda x: x]:
s2 = s.copy()
idxr(s2)[0.1] = 0
assert s2.index.is_floating()
assert idxr(s2)[0.1] == 0
s2 = s.copy()
idxr(s2)[0.0] = 0
tm.assert_index_equal(s2.index, s.index)
s2 = s.copy()
idxr(s2)['0'] = 0
assert s2.index.is_object()
class TestMisc(Base):
def test_float_index_to_mixed(self):
df = DataFrame({0.0: np.random.rand(10), 1.0: np.random.rand(10)})
df['a'] = 10
tm.assert_frame_equal(DataFrame({0.0: df[0.0],
1.0: df[1.0],
'a': [10] * 10}),
df)
def test_float_index_non_scalar_assignment(self):
df = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}, index=[1., 2., 3.])
df.loc[df.index[:2]] = 1
expected = DataFrame({'a': [1, 1, 3], 'b': [1, 1, 5]}, index=df.index)
tm.assert_frame_equal(expected, df)
df = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}, index=[1., 2., 3.])
df2 = df.copy()
df.loc[df.index] = df.loc[df.index]
tm.assert_frame_equal(df, df2)
def test_float_index_at_iat(self):
s = Series([1, 2, 3], index=[0.1, 0.2, 0.3])
for el, item in s.iteritems():
assert s.at[el] == item
for i in range(len(s)):
assert s.iat[i] == i + 1
def test_mixed_index_assignment(self):
# GH 19860
s = Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 1, 2])
s.at['a'] = 11
assert s.iat[0] == 11
s.at[1] = 22
assert s.iat[3] == 22
def test_mixed_index_no_fallback(self):
# GH 19860
s = Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 1, 2])
with pytest.raises(KeyError):
s.at[0]
with pytest.raises(KeyError):
s.at[4]
def test_rhs_alignment(self):
# GH8258, tests that both rows & columns are aligned to what is
# assigned to. covers both uniform data-type & multi-type cases
def run_tests(df, rhs, right):
# label, index, slice
lbl_one, idx_one, slice_one = list('bcd'), [1, 2, 3], slice(1, 4)
lbl_two, idx_two, slice_two = ['joe', 'jolie'], [1, 2], slice(1, 3)
left = df.copy()
left.loc[lbl_one, lbl_two] = rhs
tm.assert_frame_equal(left, right)
left = df.copy()
left.iloc[idx_one, idx_two] = rhs
tm.assert_frame_equal(left, right)
left = df.copy()
with catch_warnings(record=True):
# XXX: finer-filter here.
simplefilter("ignore")
left.ix[slice_one, slice_two] = rhs
tm.assert_frame_equal(left, right)
left = df.copy()
with catch_warnings(record=True):
simplefilter("ignore")
left.ix[idx_one, idx_two] = rhs
tm.assert_frame_equal(left, right)
left = df.copy()
with catch_warnings(record=True):
simplefilter("ignore")
left.ix[lbl_one, lbl_two] = rhs
tm.assert_frame_equal(left, right)
xs = np.arange(20).reshape(5, 4)
cols = ['jim', 'joe', 'jolie', 'joline']
df = DataFrame(xs, columns=cols, index=list('abcde'))
# right hand side; permute the indices and multiplpy by -2
rhs = -2 * df.iloc[3:0:-1, 2:0:-1]
# expected `right` result; just multiply by -2
right = df.copy()
right.iloc[1:4, 1:3] *= -2
# run tests with uniform dtypes
run_tests(df, rhs, right)
# make frames multi-type & re-run tests
for frame in [df, rhs, right]:
frame['joe'] = frame['joe'].astype('float64')
frame['jolie'] = frame['jolie'].map('@{0}'.format)
run_tests(df, rhs, right)
def test_str_label_slicing_with_negative_step(self):
SLC = pd.IndexSlice
def assert_slices_equivalent(l_slc, i_slc):
tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc])
if not idx.is_integer:
# For integer indices, ix and plain getitem are position-based.
tm.assert_series_equal(s[l_slc], s.iloc[i_slc])
tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc])
for idx in [_mklbl('A', 20), np.arange(20) + 100,
np.linspace(100, 150, 20)]:
idx = Index(idx)
s = Series(np.arange(20), index=idx)
assert_slices_equivalent(SLC[idx[9]::-1], SLC[9::-1])
assert_slices_equivalent(SLC[:idx[9]:-1], SLC[:8:-1])
assert_slices_equivalent(SLC[idx[13]:idx[9]:-1], SLC[13:8:-1])
assert_slices_equivalent(SLC[idx[9]:idx[13]:-1], SLC[:0])
def test_slice_with_zero_step_raises(self):
s = Series(np.arange(20), index=_mklbl('A', 20))
with pytest.raises(ValueError, match='slice step cannot be zero'):
s[::0]
with pytest.raises(ValueError, match='slice step cannot be zero'):
s.loc[::0]
with catch_warnings(record=True):
simplefilter("ignore")
with pytest.raises(ValueError, match='slice step cannot be zero'):
s.ix[::0]
def test_indexing_assignment_dict_already_exists(self):
df = DataFrame({'x': [1, 2, 6],
'y': [2, 2, 8],
'z': [-5, 0, 5]}).set_index('z')
expected = df.copy()
rhs = dict(x=9, y=99)
df.loc[5] = rhs
expected.loc[5] = [9, 99]
tm.assert_frame_equal(df, expected)
def test_indexing_dtypes_on_empty(self):
# Check that .iloc and .ix return correct dtypes GH9983
df = DataFrame({'a': [1, 2, 3], 'b': ['b', 'b2', 'b3']})
with catch_warnings(record=True):
simplefilter("ignore")
df2 = df.ix[[], :]
assert df2.loc[:, 'a'].dtype == np.int64
tm.assert_series_equal(df2.loc[:, 'a'], df2.iloc[:, 0])
with catch_warnings(record=True):
simplefilter("ignore")
tm.assert_series_equal(df2.loc[:, 'a'], df2.ix[:, 0])
def test_range_in_series_indexing(self):
# range can cause an indexing error
# GH 11652
for x in [5, 999999, 1000000]:
s = Series(index=range(x))
s.loc[range(1)] = 42
tm.assert_series_equal(s.loc[range(1)], Series(42.0, index=[0]))
s.loc[range(2)] = 43
tm.assert_series_equal(s.loc[range(2)], Series(43.0, index=[0, 1]))
def test_non_reducing_slice(self):
df = DataFrame([[0, 1], [2, 3]])
slices = [
# pd.IndexSlice[:, :],
pd.IndexSlice[:, 1],
pd.IndexSlice[1, :],
pd.IndexSlice[[1], [1]],
pd.IndexSlice[1, [1]],
pd.IndexSlice[[1], 1],
pd.IndexSlice[1],
pd.IndexSlice[1, 1],
slice(None, None, None),
[0, 1],
np.array([0, 1]),
Series([0, 1])
]
for slice_ in slices:
tslice_ = _non_reducing_slice(slice_)
assert isinstance(df.loc[tslice_], DataFrame)
def test_list_slice(self):
# like dataframe getitem
slices = [['A'], Series(['A']), np.array(['A'])]
df = DataFrame({'A': [1, 2], 'B': [3, 4]}, index=['A', 'B'])
expected = pd.IndexSlice[:, ['A']]
for subset in slices:
result = _non_reducing_slice(subset)
tm.assert_frame_equal(df.loc[result], df.loc[expected])
def test_maybe_numeric_slice(self):
df = DataFrame({'A': [1, 2], 'B': ['c', 'd'], 'C': [True, False]})
result = _maybe_numeric_slice(df, slice_=None)
expected = pd.IndexSlice[:, ['A']]
assert result == expected
result = _maybe_numeric_slice(df, None, include_bool=True)
expected = pd.IndexSlice[:, ['A', 'C']]
result = _maybe_numeric_slice(df, [1])
expected = [1]
assert result == expected
def test_partial_boolean_frame_indexing(self):
# GH 17170
df = DataFrame(np.arange(9.).reshape(3, 3),
index=list('abc'), columns=list('ABC'))
index_df = DataFrame(1, index=list('ab'), columns=list('AB'))
result = df[index_df.notnull()]
expected = DataFrame(np.array([[0., 1., np.nan],
[3., 4., np.nan],
[np.nan] * 3]),
index=list('abc'),
columns=list('ABC'))
tm.assert_frame_equal(result, expected)
def test_no_reference_cycle(self):
df = DataFrame({'a': [0, 1], 'b': [2, 3]})
for name in ('loc', 'iloc', 'at', 'iat'):
getattr(df, name)
with catch_warnings(record=True):
simplefilter("ignore")
getattr(df, 'ix')
wr = weakref.ref(df)
del df
assert wr() is None
class TestSeriesNoneCoercion(object):
EXPECTED_RESULTS = [
# For numeric series, we should coerce to NaN.
([1, 2, 3], [np.nan, 2, 3]),
([1.0, 2.0, 3.0], [np.nan, 2.0, 3.0]),
# For datetime series, we should coerce to NaT.
([datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
[NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)]),
# For objects, we should preserve the None value.
(["foo", "bar", "baz"], [None, "bar", "baz"]),
]
def test_coercion_with_setitem(self):
for start_data, expected_result in self.EXPECTED_RESULTS:
start_series = Series(start_data)
start_series[0] = None
expected_series = Series(expected_result)
tm.assert_series_equal(start_series, expected_series)
def test_coercion_with_loc_setitem(self):
for start_data, expected_result in self.EXPECTED_RESULTS:
start_series = Series(start_data)
start_series.loc[0] = None
expected_series = Series(expected_result)
tm.assert_series_equal(start_series, expected_series)
def test_coercion_with_setitem_and_series(self):
for start_data, expected_result in self.EXPECTED_RESULTS:
start_series = Series(start_data)
start_series[start_series == start_series[0]] = None
expected_series = Series(expected_result)
tm.assert_series_equal(start_series, expected_series)
def test_coercion_with_loc_and_series(self):
for start_data, expected_result in self.EXPECTED_RESULTS:
start_series = Series(start_data)
start_series.loc[start_series == start_series[0]] = None
expected_series = Series(expected_result)
tm.assert_series_equal(start_series, expected_series)
class TestDataframeNoneCoercion(object):
EXPECTED_SINGLE_ROW_RESULTS = [
# For numeric series, we should coerce to NaN.
([1, 2, 3], [np.nan, 2, 3]),
([1.0, 2.0, 3.0], [np.nan, 2.0, 3.0]),