forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_missing.py
883 lines (722 loc) · 32 KB
/
test_missing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
# -*- coding: utf-8 -*-
from __future__ import print_function
import datetime
from distutils.version import LooseVersion
import dateutil
import numpy as np
import pytest
from pandas.compat import PY2, lrange
import pandas.util._test_decorators as td
import pandas as pd
from pandas import Categorical, DataFrame, Series, Timestamp, date_range
from pandas.tests.frame.common import TestData, _check_mixed_float
import pandas.util.testing as tm
from pandas.util.testing import assert_frame_equal, assert_series_equal
try:
import scipy
_is_scipy_ge_0190 = (LooseVersion(scipy.__version__) >=
LooseVersion('0.19.0'))
except ImportError:
_is_scipy_ge_0190 = False
def _skip_if_no_pchip():
try:
from scipy.interpolate import pchip_interpolate # noqa
except ImportError:
import pytest
pytest.skip('scipy.interpolate.pchip missing')
class TestDataFrameMissingData(TestData):
def test_dropEmptyRows(self):
N = len(self.frame.index)
mat = np.random.randn(N)
mat[:5] = np.nan
frame = DataFrame({'foo': mat}, index=self.frame.index)
original = Series(mat, index=self.frame.index, name='foo')
expected = original.dropna()
inplace_frame1, inplace_frame2 = frame.copy(), frame.copy()
smaller_frame = frame.dropna(how='all')
# check that original was preserved
assert_series_equal(frame['foo'], original)
inplace_frame1.dropna(how='all', inplace=True)
assert_series_equal(smaller_frame['foo'], expected)
assert_series_equal(inplace_frame1['foo'], expected)
smaller_frame = frame.dropna(how='all', subset=['foo'])
inplace_frame2.dropna(how='all', subset=['foo'], inplace=True)
assert_series_equal(smaller_frame['foo'], expected)
assert_series_equal(inplace_frame2['foo'], expected)
def test_dropIncompleteRows(self):
N = len(self.frame.index)
mat = np.random.randn(N)
mat[:5] = np.nan
frame = DataFrame({'foo': mat}, index=self.frame.index)
frame['bar'] = 5
original = Series(mat, index=self.frame.index, name='foo')
inp_frame1, inp_frame2 = frame.copy(), frame.copy()
smaller_frame = frame.dropna()
assert_series_equal(frame['foo'], original)
inp_frame1.dropna(inplace=True)
exp = Series(mat[5:], index=self.frame.index[5:], name='foo')
tm.assert_series_equal(smaller_frame['foo'], exp)
tm.assert_series_equal(inp_frame1['foo'], exp)
samesize_frame = frame.dropna(subset=['bar'])
assert_series_equal(frame['foo'], original)
assert (frame['bar'] == 5).all()
inp_frame2.dropna(subset=['bar'], inplace=True)
tm.assert_index_equal(samesize_frame.index, self.frame.index)
tm.assert_index_equal(inp_frame2.index, self.frame.index)
@pytest.mark.skipif(PY2, reason="pytest.raises match regex fails")
def test_dropna(self):
df = DataFrame(np.random.randn(6, 4))
df[2][:2] = np.nan
dropped = df.dropna(axis=1)
expected = df.loc[:, [0, 1, 3]]
inp = df.copy()
inp.dropna(axis=1, inplace=True)
assert_frame_equal(dropped, expected)
assert_frame_equal(inp, expected)
dropped = df.dropna(axis=0)
expected = df.loc[lrange(2, 6)]
inp = df.copy()
inp.dropna(axis=0, inplace=True)
assert_frame_equal(dropped, expected)
assert_frame_equal(inp, expected)
# threshold
dropped = df.dropna(axis=1, thresh=5)
expected = df.loc[:, [0, 1, 3]]
inp = df.copy()
inp.dropna(axis=1, thresh=5, inplace=True)
assert_frame_equal(dropped, expected)
assert_frame_equal(inp, expected)
dropped = df.dropna(axis=0, thresh=4)
expected = df.loc[lrange(2, 6)]
inp = df.copy()
inp.dropna(axis=0, thresh=4, inplace=True)
assert_frame_equal(dropped, expected)
assert_frame_equal(inp, expected)
dropped = df.dropna(axis=1, thresh=4)
assert_frame_equal(dropped, df)
dropped = df.dropna(axis=1, thresh=3)
assert_frame_equal(dropped, df)
# subset
dropped = df.dropna(axis=0, subset=[0, 1, 3])
inp = df.copy()
inp.dropna(axis=0, subset=[0, 1, 3], inplace=True)
assert_frame_equal(dropped, df)
assert_frame_equal(inp, df)
# all
dropped = df.dropna(axis=1, how='all')
assert_frame_equal(dropped, df)
df[2] = np.nan
dropped = df.dropna(axis=1, how='all')
expected = df.loc[:, [0, 1, 3]]
assert_frame_equal(dropped, expected)
# bad input
msg = ("No axis named 3 for object type"
" <class 'pandas.core.frame.DataFrame'>")
with pytest.raises(ValueError, match=msg):
df.dropna(axis=3)
def test_drop_and_dropna_caching(self):
# tst that cacher updates
original = Series([1, 2, np.nan], name='A')
expected = Series([1, 2], dtype=original.dtype, name='A')
df = pd.DataFrame({'A': original.values.copy()})
df2 = df.copy()
df['A'].dropna()
assert_series_equal(df['A'], original)
df['A'].dropna(inplace=True)
assert_series_equal(df['A'], expected)
df2['A'].drop([1])
assert_series_equal(df2['A'], original)
df2['A'].drop([1], inplace=True)
assert_series_equal(df2['A'], original.drop([1]))
def test_dropna_corner(self):
# bad input
msg = "invalid how option: foo"
with pytest.raises(ValueError, match=msg):
self.frame.dropna(how='foo')
msg = "must specify how or thresh"
with pytest.raises(TypeError, match=msg):
self.frame.dropna(how=None)
# non-existent column - 8303
with pytest.raises(KeyError, match=r"^\['X'\]$"):
self.frame.dropna(subset=['A', 'X'])
def test_dropna_multiple_axes(self):
df = DataFrame([[1, np.nan, 2, 3],
[4, np.nan, 5, 6],
[np.nan, np.nan, np.nan, np.nan],
[7, np.nan, 8, 9]])
cp = df.copy()
# GH20987
with tm.assert_produces_warning(FutureWarning):
result = df.dropna(how='all', axis=[0, 1])
with tm.assert_produces_warning(FutureWarning):
result2 = df.dropna(how='all', axis=(0, 1))
expected = df.dropna(how='all').dropna(how='all', axis=1)
assert_frame_equal(result, expected)
assert_frame_equal(result2, expected)
assert_frame_equal(df, cp)
inp = df.copy()
with tm.assert_produces_warning(FutureWarning):
inp.dropna(how='all', axis=(0, 1), inplace=True)
assert_frame_equal(inp, expected)
def test_dropna_tz_aware_datetime(self):
# GH13407
df = DataFrame()
dt1 = datetime.datetime(2015, 1, 1,
tzinfo=dateutil.tz.tzutc())
dt2 = datetime.datetime(2015, 2, 2,
tzinfo=dateutil.tz.tzutc())
df['Time'] = [dt1]
result = df.dropna(axis=0)
expected = DataFrame({'Time': [dt1]})
assert_frame_equal(result, expected)
# Ex2
df = DataFrame({'Time': [dt1, None, np.nan, dt2]})
result = df.dropna(axis=0)
expected = DataFrame([dt1, dt2],
columns=['Time'],
index=[0, 3])
assert_frame_equal(result, expected)
def test_fillna(self):
tf = self.tsframe
tf.loc[tf.index[:5], 'A'] = np.nan
tf.loc[tf.index[-5:], 'A'] = np.nan
zero_filled = self.tsframe.fillna(0)
assert (zero_filled.loc[zero_filled.index[:5], 'A'] == 0).all()
padded = self.tsframe.fillna(method='pad')
assert np.isnan(padded.loc[padded.index[:5], 'A']).all()
assert (padded.loc[padded.index[-5:], 'A'] ==
padded.loc[padded.index[-5], 'A']).all()
# mixed type
mf = self.mixed_frame
mf.loc[mf.index[5:20], 'foo'] = np.nan
mf.loc[mf.index[-10:], 'A'] = np.nan
result = self.mixed_frame.fillna(value=0)
result = self.mixed_frame.fillna(method='pad')
msg = "Must specify a fill 'value' or 'method'"
with pytest.raises(ValueError, match=msg):
self.tsframe.fillna()
msg = "Cannot specify both 'value' and 'method'"
with pytest.raises(ValueError, match=msg):
self.tsframe.fillna(5, method='ffill')
# mixed numeric (but no float16)
mf = self.mixed_float.reindex(columns=['A', 'B', 'D'])
mf.loc[mf.index[-10:], 'A'] = np.nan
result = mf.fillna(value=0)
_check_mixed_float(result, dtype=dict(C=None))
result = mf.fillna(method='pad')
_check_mixed_float(result, dtype=dict(C=None))
# empty frame (GH #2778)
df = DataFrame(columns=['x'])
for m in ['pad', 'backfill']:
df.x.fillna(method=m, inplace=True)
df.x.fillna(method=m)
# with different dtype (GH3386)
df = DataFrame([['a', 'a', np.nan, 'a'], [
'b', 'b', np.nan, 'b'], ['c', 'c', np.nan, 'c']])
result = df.fillna({2: 'foo'})
expected = DataFrame([['a', 'a', 'foo', 'a'],
['b', 'b', 'foo', 'b'],
['c', 'c', 'foo', 'c']])
assert_frame_equal(result, expected)
df.fillna({2: 'foo'}, inplace=True)
assert_frame_equal(df, expected)
# limit and value
df = DataFrame(np.random.randn(10, 3))
df.iloc[2:7, 0] = np.nan
df.iloc[3:5, 2] = np.nan
expected = df.copy()
expected.iloc[2, 0] = 999
expected.iloc[3, 2] = 999
result = df.fillna(999, limit=1)
assert_frame_equal(result, expected)
# with datelike
# GH 6344
df = DataFrame({
'Date': [pd.NaT, Timestamp("2014-1-1")],
'Date2': [Timestamp("2013-1-1"), pd.NaT]
})
expected = df.copy()
expected['Date'] = expected['Date'].fillna(
df.loc[df.index[0], 'Date2'])
result = df.fillna(value={'Date': df['Date2']})
assert_frame_equal(result, expected)
# with timezone
# GH 15855
df = pd.DataFrame({'A': [pd.Timestamp('2012-11-11 00:00:00+01:00'),
pd.NaT]})
exp = pd.DataFrame({'A': [pd.Timestamp('2012-11-11 00:00:00+01:00'),
pd.Timestamp('2012-11-11 00:00:00+01:00')]})
assert_frame_equal(df.fillna(method='pad'), exp)
df = pd.DataFrame({'A': [pd.NaT,
pd.Timestamp('2012-11-11 00:00:00+01:00')]})
exp = pd.DataFrame({'A': [pd.Timestamp('2012-11-11 00:00:00+01:00'),
pd.Timestamp('2012-11-11 00:00:00+01:00')]})
assert_frame_equal(df.fillna(method='bfill'), exp)
# with timezone in another column
# GH 15522
df = pd.DataFrame({'A': pd.date_range('20130101', periods=4,
tz='US/Eastern'),
'B': [1, 2, np.nan, np.nan]})
result = df.fillna(method='pad')
expected = pd.DataFrame({'A': pd.date_range('20130101', periods=4,
tz='US/Eastern'),
'B': [1., 2., 2., 2.]})
assert_frame_equal(result, expected)
def test_na_actions_categorical(self):
cat = Categorical([1, 2, 3, np.nan], categories=[1, 2, 3])
vals = ["a", "b", np.nan, "d"]
df = DataFrame({"cats": cat, "vals": vals})
cat2 = Categorical([1, 2, 3, 3], categories=[1, 2, 3])
vals2 = ["a", "b", "b", "d"]
df_exp_fill = DataFrame({"cats": cat2, "vals": vals2})
cat3 = Categorical([1, 2, 3], categories=[1, 2, 3])
vals3 = ["a", "b", np.nan]
df_exp_drop_cats = DataFrame({"cats": cat3, "vals": vals3})
cat4 = Categorical([1, 2], categories=[1, 2, 3])
vals4 = ["a", "b"]
df_exp_drop_all = DataFrame({"cats": cat4, "vals": vals4})
# fillna
res = df.fillna(value={"cats": 3, "vals": "b"})
tm.assert_frame_equal(res, df_exp_fill)
with pytest.raises(ValueError, match=("fill value must "
"be in categories")):
df.fillna(value={"cats": 4, "vals": "c"})
res = df.fillna(method='pad')
tm.assert_frame_equal(res, df_exp_fill)
# dropna
res = df.dropna(subset=["cats"])
tm.assert_frame_equal(res, df_exp_drop_cats)
res = df.dropna()
tm.assert_frame_equal(res, df_exp_drop_all)
# make sure that fillna takes missing values into account
c = Categorical([np.nan, "b", np.nan], categories=["a", "b"])
df = pd.DataFrame({"cats": c, "vals": [1, 2, 3]})
cat_exp = Categorical(["a", "b", "a"], categories=["a", "b"])
df_exp = DataFrame({"cats": cat_exp, "vals": [1, 2, 3]})
res = df.fillna("a")
tm.assert_frame_equal(res, df_exp)
def test_fillna_categorical_nan(self):
# GH 14021
# np.nan should always be a valid filler
cat = Categorical([np.nan, 2, np.nan])
val = Categorical([np.nan, np.nan, np.nan])
df = DataFrame({"cats": cat, "vals": val})
res = df.fillna(df.median())
v_exp = [np.nan, np.nan, np.nan]
df_exp = DataFrame({"cats": [2, 2, 2], "vals": v_exp},
dtype='category')
tm.assert_frame_equal(res, df_exp)
result = df.cats.fillna(np.nan)
tm.assert_series_equal(result, df.cats)
result = df.vals.fillna(np.nan)
tm.assert_series_equal(result, df.vals)
idx = pd.DatetimeIndex(['2011-01-01 09:00', '2016-01-01 23:45',
'2011-01-01 09:00', pd.NaT, pd.NaT])
df = DataFrame({'a': Categorical(idx)})
tm.assert_frame_equal(df.fillna(value=pd.NaT), df)
idx = pd.PeriodIndex(['2011-01', '2011-01', '2011-01',
pd.NaT, pd.NaT], freq='M')
df = DataFrame({'a': Categorical(idx)})
tm.assert_frame_equal(df.fillna(value=pd.NaT), df)
idx = pd.TimedeltaIndex(['1 days', '2 days',
'1 days', pd.NaT, pd.NaT])
df = DataFrame({'a': Categorical(idx)})
tm.assert_frame_equal(df.fillna(value=pd.NaT), df)
def test_fillna_downcast(self):
# GH 15277
# infer int64 from float64
df = pd.DataFrame({'a': [1., np.nan]})
result = df.fillna(0, downcast='infer')
expected = pd.DataFrame({'a': [1, 0]})
assert_frame_equal(result, expected)
# infer int64 from float64 when fillna value is a dict
df = pd.DataFrame({'a': [1., np.nan]})
result = df.fillna({'a': 0}, downcast='infer')
expected = pd.DataFrame({'a': [1, 0]})
assert_frame_equal(result, expected)
def test_fillna_dtype_conversion(self):
# make sure that fillna on an empty frame works
df = DataFrame(index=["A", "B", "C"], columns=[1, 2, 3, 4, 5])
result = df.get_dtype_counts().sort_values()
expected = Series({'object': 5})
assert_series_equal(result, expected)
result = df.fillna(1)
expected = DataFrame(1, index=["A", "B", "C"], columns=[1, 2, 3, 4, 5])
result = result.get_dtype_counts().sort_values()
expected = Series({'int64': 5})
assert_series_equal(result, expected)
# empty block
df = DataFrame(index=lrange(3), columns=['A', 'B'], dtype='float64')
result = df.fillna('nan')
expected = DataFrame('nan', index=lrange(3), columns=['A', 'B'])
assert_frame_equal(result, expected)
# equiv of replace
df = DataFrame(dict(A=[1, np.nan], B=[1., 2.]))
for v in ['', 1, np.nan, 1.0]:
expected = df.replace(np.nan, v)
result = df.fillna(v)
assert_frame_equal(result, expected)
def test_fillna_datetime_columns(self):
# GH 7095
df = pd.DataFrame({'A': [-1, -2, np.nan],
'B': date_range('20130101', periods=3),
'C': ['foo', 'bar', None],
'D': ['foo2', 'bar2', None]},
index=date_range('20130110', periods=3))
result = df.fillna('?')
expected = pd.DataFrame({'A': [-1, -2, '?'],
'B': date_range('20130101', periods=3),
'C': ['foo', 'bar', '?'],
'D': ['foo2', 'bar2', '?']},
index=date_range('20130110', periods=3))
tm.assert_frame_equal(result, expected)
df = pd.DataFrame({'A': [-1, -2, np.nan],
'B': [pd.Timestamp('2013-01-01'),
pd.Timestamp('2013-01-02'), pd.NaT],
'C': ['foo', 'bar', None],
'D': ['foo2', 'bar2', None]},
index=date_range('20130110', periods=3))
result = df.fillna('?')
expected = pd.DataFrame({'A': [-1, -2, '?'],
'B': [pd.Timestamp('2013-01-01'),
pd.Timestamp('2013-01-02'), '?'],
'C': ['foo', 'bar', '?'],
'D': ['foo2', 'bar2', '?']},
index=pd.date_range('20130110', periods=3))
tm.assert_frame_equal(result, expected)
def test_ffill(self):
self.tsframe['A'][:5] = np.nan
self.tsframe['A'][-5:] = np.nan
assert_frame_equal(self.tsframe.ffill(),
self.tsframe.fillna(method='ffill'))
def test_bfill(self):
self.tsframe['A'][:5] = np.nan
self.tsframe['A'][-5:] = np.nan
assert_frame_equal(self.tsframe.bfill(),
self.tsframe.fillna(method='bfill'))
def test_frame_pad_backfill_limit(self):
index = np.arange(10)
df = DataFrame(np.random.randn(10, 4), index=index)
result = df[:2].reindex(index, method='pad', limit=5)
expected = df[:2].reindex(index).fillna(method='pad')
expected.values[-3:] = np.nan
tm.assert_frame_equal(result, expected)
result = df[-2:].reindex(index, method='backfill', limit=5)
expected = df[-2:].reindex(index).fillna(method='backfill')
expected.values[:3] = np.nan
tm.assert_frame_equal(result, expected)
def test_frame_fillna_limit(self):
index = np.arange(10)
df = DataFrame(np.random.randn(10, 4), index=index)
result = df[:2].reindex(index)
result = result.fillna(method='pad', limit=5)
expected = df[:2].reindex(index).fillna(method='pad')
expected.values[-3:] = np.nan
tm.assert_frame_equal(result, expected)
result = df[-2:].reindex(index)
result = result.fillna(method='backfill', limit=5)
expected = df[-2:].reindex(index).fillna(method='backfill')
expected.values[:3] = np.nan
tm.assert_frame_equal(result, expected)
def test_fillna_skip_certain_blocks(self):
# don't try to fill boolean, int blocks
df = DataFrame(np.random.randn(10, 4).astype(int))
# it works!
df.fillna(np.nan)
def test_fillna_inplace(self):
df = DataFrame(np.random.randn(10, 4))
df[1][:4] = np.nan
df[3][-4:] = np.nan
expected = df.fillna(value=0)
assert expected is not df
df.fillna(value=0, inplace=True)
tm.assert_frame_equal(df, expected)
expected = df.fillna(value={0: 0}, inplace=True)
assert expected is None
df[1][:4] = np.nan
df[3][-4:] = np.nan
expected = df.fillna(method='ffill')
assert expected is not df
df.fillna(method='ffill', inplace=True)
tm.assert_frame_equal(df, expected)
def test_fillna_dict_series(self):
df = DataFrame({'a': [np.nan, 1, 2, np.nan, np.nan],
'b': [1, 2, 3, np.nan, np.nan],
'c': [np.nan, 1, 2, 3, 4]})
result = df.fillna({'a': 0, 'b': 5})
expected = df.copy()
expected['a'] = expected['a'].fillna(0)
expected['b'] = expected['b'].fillna(5)
assert_frame_equal(result, expected)
# it works
result = df.fillna({'a': 0, 'b': 5, 'd': 7})
# Series treated same as dict
result = df.fillna(df.max())
expected = df.fillna(df.max().to_dict())
assert_frame_equal(result, expected)
# disable this for now
with pytest.raises(NotImplementedError, match='column by column'):
df.fillna(df.max(1), axis=1)
def test_fillna_dataframe(self):
# GH 8377
df = DataFrame({'a': [np.nan, 1, 2, np.nan, np.nan],
'b': [1, 2, 3, np.nan, np.nan],
'c': [np.nan, 1, 2, 3, 4]},
index=list('VWXYZ'))
# df2 may have different index and columns
df2 = DataFrame({'a': [np.nan, 10, 20, 30, 40],
'b': [50, 60, 70, 80, 90],
'foo': ['bar'] * 5},
index=list('VWXuZ'))
result = df.fillna(df2)
# only those columns and indices which are shared get filled
expected = DataFrame({'a': [np.nan, 1, 2, np.nan, 40],
'b': [1, 2, 3, np.nan, 90],
'c': [np.nan, 1, 2, 3, 4]},
index=list('VWXYZ'))
assert_frame_equal(result, expected)
def test_fillna_columns(self):
df = DataFrame(np.random.randn(10, 10))
df.values[:, ::2] = np.nan
result = df.fillna(method='ffill', axis=1)
expected = df.T.fillna(method='pad').T
assert_frame_equal(result, expected)
df.insert(6, 'foo', 5)
result = df.fillna(method='ffill', axis=1)
expected = df.astype(float).fillna(method='ffill', axis=1)
assert_frame_equal(result, expected)
def test_fillna_invalid_method(self):
with pytest.raises(ValueError, match='ffil'):
self.frame.fillna(method='ffil')
def test_fillna_invalid_value(self):
# list
msg = ("\"value\" parameter must be a scalar or dict, but you passed"
" a \"{}\"")
with pytest.raises(TypeError, match=msg.format('list')):
self.frame.fillna([1, 2])
# tuple
with pytest.raises(TypeError, match=msg.format('tuple')):
self.frame.fillna((1, 2))
# frame with series
msg = ("\"value\" parameter must be a scalar, dict or Series, but you"
" passed a \"DataFrame\"")
with pytest.raises(TypeError, match=msg):
self.frame.iloc[:, 0].fillna(self.frame)
def test_fillna_col_reordering(self):
cols = ["COL." + str(i) for i in range(5, 0, -1)]
data = np.random.rand(20, 5)
df = DataFrame(index=lrange(20), columns=cols, data=data)
filled = df.fillna(method='ffill')
assert df.columns.tolist() == filled.columns.tolist()
def test_fill_corner(self):
mf = self.mixed_frame
mf.loc[mf.index[5:20], 'foo'] = np.nan
mf.loc[mf.index[-10:], 'A'] = np.nan
filled = self.mixed_frame.fillna(value=0)
assert (filled.loc[filled.index[5:20], 'foo'] == 0).all()
del self.mixed_frame['foo']
empty_float = self.frame.reindex(columns=[])
# TODO(wesm): unused?
result = empty_float.fillna(value=0) # noqa
def test_fill_value_when_combine_const(self):
# GH12723
dat = np.array([0, 1, np.nan, 3, 4, 5], dtype='float')
df = DataFrame({'foo': dat}, index=range(6))
exp = df.fillna(0).add(2)
res = df.add(2, fill_value=0)
assert_frame_equal(res, exp)
class TestDataFrameInterpolate(TestData):
def test_interp_basic(self):
df = DataFrame({'A': [1, 2, np.nan, 4],
'B': [1, 4, 9, np.nan],
'C': [1, 2, 3, 5],
'D': list('abcd')})
expected = DataFrame({'A': [1., 2., 3., 4.],
'B': [1., 4., 9., 9.],
'C': [1, 2, 3, 5],
'D': list('abcd')})
result = df.interpolate()
assert_frame_equal(result, expected)
result = df.set_index('C').interpolate()
expected = df.set_index('C')
expected.loc[3, 'A'] = 3
expected.loc[5, 'B'] = 9
assert_frame_equal(result, expected)
def test_interp_bad_method(self):
df = DataFrame({'A': [1, 2, np.nan, 4],
'B': [1, 4, 9, np.nan],
'C': [1, 2, 3, 5],
'D': list('abcd')})
with pytest.raises(ValueError):
df.interpolate(method='not_a_method')
def test_interp_combo(self):
df = DataFrame({'A': [1., 2., np.nan, 4.],
'B': [1, 4, 9, np.nan],
'C': [1, 2, 3, 5],
'D': list('abcd')})
result = df['A'].interpolate()
expected = Series([1., 2., 3., 4.], name='A')
assert_series_equal(result, expected)
result = df['A'].interpolate(downcast='infer')
expected = Series([1, 2, 3, 4], name='A')
assert_series_equal(result, expected)
def test_interp_nan_idx(self):
df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [np.nan, 2, 3, 4]})
df = df.set_index('A')
with pytest.raises(NotImplementedError):
df.interpolate(method='values')
@td.skip_if_no_scipy
def test_interp_various(self):
df = DataFrame({'A': [1, 2, np.nan, 4, 5, np.nan, 7],
'C': [1, 2, 3, 5, 8, 13, 21]})
df = df.set_index('C')
expected = df.copy()
result = df.interpolate(method='polynomial', order=1)
expected.A.loc[3] = 2.66666667
expected.A.loc[13] = 5.76923076
assert_frame_equal(result, expected)
result = df.interpolate(method='cubic')
# GH #15662.
# new cubic and quadratic interpolation algorithms from scipy 0.19.0.
# previously `splmake` was used. See scipy/scipy#6710
if _is_scipy_ge_0190:
expected.A.loc[3] = 2.81547781
expected.A.loc[13] = 5.52964175
else:
expected.A.loc[3] = 2.81621174
expected.A.loc[13] = 5.64146581
assert_frame_equal(result, expected)
result = df.interpolate(method='nearest')
expected.A.loc[3] = 2
expected.A.loc[13] = 5
assert_frame_equal(result, expected, check_dtype=False)
result = df.interpolate(method='quadratic')
if _is_scipy_ge_0190:
expected.A.loc[3] = 2.82150771
expected.A.loc[13] = 6.12648668
else:
expected.A.loc[3] = 2.82533638
expected.A.loc[13] = 6.02817974
assert_frame_equal(result, expected)
result = df.interpolate(method='slinear')
expected.A.loc[3] = 2.66666667
expected.A.loc[13] = 5.76923077
assert_frame_equal(result, expected)
result = df.interpolate(method='zero')
expected.A.loc[3] = 2.
expected.A.loc[13] = 5
assert_frame_equal(result, expected, check_dtype=False)
@td.skip_if_no_scipy
def test_interp_alt_scipy(self):
df = DataFrame({'A': [1, 2, np.nan, 4, 5, np.nan, 7],
'C': [1, 2, 3, 5, 8, 13, 21]})
result = df.interpolate(method='barycentric')
expected = df.copy()
expected.loc[2, 'A'] = 3
expected.loc[5, 'A'] = 6
assert_frame_equal(result, expected)
result = df.interpolate(method='barycentric', downcast='infer')
assert_frame_equal(result, expected.astype(np.int64))
result = df.interpolate(method='krogh')
expectedk = df.copy()
expectedk['A'] = expected['A']
assert_frame_equal(result, expectedk)
_skip_if_no_pchip()
import scipy
result = df.interpolate(method='pchip')
expected.loc[2, 'A'] = 3
if LooseVersion(scipy.__version__) >= LooseVersion('0.17.0'):
expected.loc[5, 'A'] = 6.0
else:
expected.loc[5, 'A'] = 6.125
assert_frame_equal(result, expected)
def test_interp_rowwise(self):
df = DataFrame({0: [1, 2, np.nan, 4],
1: [2, 3, 4, np.nan],
2: [np.nan, 4, 5, 6],
3: [4, np.nan, 6, 7],
4: [1, 2, 3, 4]})
result = df.interpolate(axis=1)
expected = df.copy()
expected.loc[3, 1] = 5
expected.loc[0, 2] = 3
expected.loc[1, 3] = 3
expected[4] = expected[4].astype(np.float64)
assert_frame_equal(result, expected)
result = df.interpolate(axis=1, method='values')
assert_frame_equal(result, expected)
result = df.interpolate(axis=0)
expected = df.interpolate()
assert_frame_equal(result, expected)
def test_rowwise_alt(self):
df = DataFrame({0: [0, .5, 1., np.nan, 4, 8, np.nan, np.nan, 64],
1: [1, 2, 3, 4, 3, 2, 1, 0, -1]})
df.interpolate(axis=0)
@pytest.mark.parametrize("check_scipy", [
False, pytest.param(True, marks=td.skip_if_no_scipy)
])
def test_interp_leading_nans(self, check_scipy):
df = DataFrame({"A": [np.nan, np.nan, .5, .25, 0],
"B": [np.nan, -3, -3.5, np.nan, -4]})
result = df.interpolate()
expected = df.copy()
expected['B'].loc[3] = -3.75
assert_frame_equal(result, expected)
if check_scipy:
result = df.interpolate(method='polynomial', order=1)
assert_frame_equal(result, expected)
def test_interp_raise_on_only_mixed(self):
df = DataFrame({'A': [1, 2, np.nan, 4],
'B': ['a', 'b', 'c', 'd'],
'C': [np.nan, 2, 5, 7],
'D': [np.nan, np.nan, 9, 9],
'E': [1, 2, 3, 4]})
with pytest.raises(TypeError):
df.interpolate(axis=1)
def test_interp_raise_on_all_object_dtype(self):
# GH 22985
df = DataFrame({
'A': [1, 2, 3],
'B': [4, 5, 6]},
dtype='object')
msg = ("Cannot interpolate with all object-dtype columns "
"in the DataFrame. Try setting at least one "
"column to a numeric dtype.")
with pytest.raises(TypeError, match=msg):
df.interpolate()
def test_interp_inplace(self):
df = DataFrame({'a': [1., 2., np.nan, 4.]})
expected = DataFrame({'a': [1., 2., 3., 4.]})
result = df.copy()
result['a'].interpolate(inplace=True)
assert_frame_equal(result, expected)
result = df.copy()
result['a'].interpolate(inplace=True, downcast='infer')
assert_frame_equal(result, expected.astype('int64'))
def test_interp_inplace_row(self):
# GH 10395
result = DataFrame({'a': [1., 2., 3., 4.],
'b': [np.nan, 2., 3., 4.],
'c': [3, 2, 2, 2]})
expected = result.interpolate(method='linear', axis=1, inplace=False)
result.interpolate(method='linear', axis=1, inplace=True)
assert_frame_equal(result, expected)
def test_interp_ignore_all_good(self):
# GH
df = DataFrame({'A': [1, 2, np.nan, 4],
'B': [1, 2, 3, 4],
'C': [1., 2., np.nan, 4.],
'D': [1., 2., 3., 4.]})
expected = DataFrame({'A': np.array(
[1, 2, 3, 4], dtype='float64'),
'B': np.array(
[1, 2, 3, 4], dtype='int64'),
'C': np.array(
[1., 2., 3, 4.], dtype='float64'),
'D': np.array(
[1., 2., 3., 4.], dtype='float64')})
result = df.interpolate(downcast=None)
assert_frame_equal(result, expected)
# all good
result = df[['B', 'D']].interpolate(downcast=None)
assert_frame_equal(result, df[['B', 'D']])