forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatetimes.py
1010 lines (866 loc) · 32 KB
/
datetimes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from collections import abc
from datetime import datetime
from functools import partial
from itertools import islice
from typing import (
TYPE_CHECKING,
Callable,
List,
Optional,
Tuple,
TypeVar,
Union,
overload,
)
import warnings
import numpy as np
from pandas._libs import tslib, tslibs
from pandas._libs.tslibs import Timestamp, conversion, parsing
from pandas._libs.tslibs.parsing import ( # noqa
DateParseError,
_format_is_iso,
_guess_datetime_format,
)
from pandas._libs.tslibs.strptime import array_strptime
from pandas._typing import ArrayLike, Label, Timezone
from pandas.core.dtypes.common import (
ensure_object,
is_datetime64_dtype,
is_datetime64_ns_dtype,
is_datetime64tz_dtype,
is_float,
is_integer,
is_integer_dtype,
is_list_like,
is_numeric_dtype,
is_scalar,
)
from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries
from pandas.core.dtypes.missing import notna
from pandas.arrays import DatetimeArray, IntegerArray
from pandas.core import algorithms
from pandas.core.algorithms import unique
from pandas.core.arrays.datetimes import (
maybe_convert_dtype,
objects_to_datetime64ns,
tz_to_dtype,
)
from pandas.core.indexes.base import Index
from pandas.core.indexes.datetimes import DatetimeIndex
if TYPE_CHECKING:
from pandas import Series # noqa:F401
from pandas._libs.tslibs.nattype import NaTType # noqa:F401
# ---------------------------------------------------------------------
# types used in annotations
ArrayConvertible = Union[List, Tuple, ArrayLike, "Series"]
Scalar = Union[int, float, str]
DatetimeScalar = TypeVar("DatetimeScalar", Scalar, datetime)
DatetimeScalarOrArrayConvertible = Union[DatetimeScalar, ArrayConvertible]
# ---------------------------------------------------------------------
def _guess_datetime_format_for_array(arr, **kwargs):
# Try to guess the format based on the first non-NaN element
non_nan_elements = notna(arr).nonzero()[0]
if len(non_nan_elements):
return _guess_datetime_format(arr[non_nan_elements[0]], **kwargs)
def should_cache(
arg: ArrayConvertible, unique_share: float = 0.7, check_count: Optional[int] = None
) -> bool:
"""
Decides whether to do caching.
If the percent of unique elements among `check_count` elements less
than `unique_share * 100` then we can do caching.
Parameters
----------
arg: listlike, tuple, 1-d array, Series
unique_share: float, default=0.7, optional
0 < unique_share < 1
check_count: int, optional
0 <= check_count <= len(arg)
Returns
-------
do_caching: bool
Notes
-----
By default for a sequence of less than 50 items in size, we don't do
caching; for the number of elements less than 5000, we take ten percent of
all elements to check for a uniqueness share; if the sequence size is more
than 5000, then we check only the first 500 elements.
All constants were chosen empirically by.
"""
do_caching = True
# default realization
if check_count is None:
# in this case, the gain from caching is negligible
if len(arg) <= 50:
return False
if len(arg) <= 5000:
check_count = int(len(arg) * 0.1)
else:
check_count = 500
else:
assert (
0 <= check_count <= len(arg)
), "check_count must be in next bounds: [0; len(arg)]"
if check_count == 0:
return False
assert 0 < unique_share < 1, "unique_share must be in next bounds: (0; 1)"
unique_elements = set(islice(arg, check_count))
if len(unique_elements) > check_count * unique_share:
do_caching = False
return do_caching
def _maybe_cache(
arg: ArrayConvertible,
format: Optional[str],
cache: bool,
convert_listlike: Callable,
) -> "Series":
"""
Create a cache of unique dates from an array of dates
Parameters
----------
arg : listlike, tuple, 1-d array, Series
format : string
Strftime format to parse time
cache : boolean
True attempts to create a cache of converted values
convert_listlike : function
Conversion function to apply on dates
Returns
-------
cache_array : Series
Cache of converted, unique dates. Can be empty
"""
from pandas import Series
cache_array = Series(dtype=object)
if cache:
# Perform a quicker unique check
if not should_cache(arg):
return cache_array
unique_dates = unique(arg)
if len(unique_dates) < len(arg):
cache_dates = convert_listlike(unique_dates, format)
cache_array = Series(cache_dates, index=unique_dates)
return cache_array
def _box_as_indexlike(
dt_array: ArrayLike, utc: Optional[bool] = None, name: Label = None
) -> Index:
"""
Properly boxes the ndarray of datetimes to DatetimeIndex
if it is possible or to generic Index instead
Parameters
----------
dt_array: 1-d array
Array of datetimes to be wrapped in an Index.
tz : object
None or 'utc'
name : string, default None
Name for a resulting index
Returns
-------
result : datetime of converted dates
- DatetimeIndex if convertible to sole datetime64 type
- general Index otherwise
"""
if is_datetime64_dtype(dt_array):
tz = "utc" if utc else None
return DatetimeIndex(dt_array, tz=tz, name=name)
return Index(dt_array, name=name)
def _convert_and_box_cache(
arg: DatetimeScalarOrArrayConvertible,
cache_array: "Series",
name: Optional[str] = None,
) -> "Index":
"""
Convert array of dates with a cache and wrap the result in an Index.
Parameters
----------
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
cache_array : Series
Cache of converted, unique dates
name : string, default None
Name for a DatetimeIndex
Returns
-------
result : Index-like of converted dates
"""
from pandas import Series
result = Series(arg).map(cache_array)
return _box_as_indexlike(result, utc=None, name=name)
def _return_parsed_timezone_results(result, timezones, tz, name):
"""
Return results from array_strptime if a %z or %Z directive was passed.
Parameters
----------
result : ndarray
int64 date representations of the dates
timezones : ndarray
pytz timezone objects
tz : object
None or pytz timezone object
name : string, default None
Name for a DatetimeIndex
Returns
-------
tz_result : Index-like of parsed dates with timezone
"""
tz_results = np.array(
[Timestamp(res).tz_localize(zone) for res, zone in zip(result, timezones)]
)
if tz is not None:
# Convert to the same tz
tz_results = np.array([tz_result.tz_convert(tz) for tz_result in tz_results])
return Index(tz_results, name=name)
def _convert_listlike_datetimes(
arg,
format: Optional[str],
name: Label = None,
tz: Optional[Timezone] = None,
unit: Optional[str] = None,
errors: Optional[str] = None,
infer_datetime_format: Optional[bool] = None,
dayfirst: Optional[bool] = None,
yearfirst: Optional[bool] = None,
exact: Optional[bool] = None,
):
"""
Helper function for to_datetime. Performs the conversions of 1D listlike
of dates
Parameters
----------
arg : list, tuple, ndarray, Series, Index
date to be parsed
name : object
None or string for the Index name
tz : object
None or 'utc'
unit : string
None or string of the frequency of the passed data
errors : string
error handing behaviors from to_datetime, 'raise', 'coerce', 'ignore'
infer_datetime_format : boolean
inferring format behavior from to_datetime
dayfirst : boolean
dayfirst parsing behavior from to_datetime
yearfirst : boolean
yearfirst parsing behavior from to_datetime
exact : boolean
exact format matching behavior from to_datetime
Returns
-------
Index-like of parsed dates
"""
if isinstance(arg, (list, tuple)):
arg = np.array(arg, dtype="O")
arg_dtype = getattr(arg, "dtype", None)
# these are shortcutable
if is_datetime64tz_dtype(arg_dtype):
if not isinstance(arg, (DatetimeArray, DatetimeIndex)):
return DatetimeIndex(arg, tz=tz, name=name)
if tz == "utc":
# error: Item "DatetimeIndex" of "Union[DatetimeArray, DatetimeIndex]" has
# no attribute "tz_convert"
arg = arg.tz_convert(None).tz_localize(tz) # type: ignore
return arg
elif is_datetime64_ns_dtype(arg_dtype):
if not isinstance(arg, (DatetimeArray, DatetimeIndex)):
try:
return DatetimeIndex(arg, tz=tz, name=name)
except ValueError:
pass
elif tz:
# DatetimeArray, DatetimeIndex
return arg.tz_localize(tz)
return arg
elif unit is not None:
if format is not None:
raise ValueError("cannot specify both format and unit")
arg = getattr(arg, "_values", arg)
# GH 30050 pass an ndarray to tslib.array_with_unit_to_datetime
# because it expects an ndarray argument
if isinstance(arg, IntegerArray):
result = arg.astype(f"datetime64[{unit}]")
tz_parsed = None
else:
result, tz_parsed = tslib.array_with_unit_to_datetime(
arg, unit, errors=errors
)
if errors == "ignore":
result = Index(result, name=name)
else:
result = DatetimeIndex(result, name=name)
# GH 23758: We may still need to localize the result with tz
# GH 25546: Apply tz_parsed first (from arg), then tz (from caller)
# result will be naive but in UTC
try:
result = result.tz_localize("UTC").tz_convert(tz_parsed)
except AttributeError:
# Regular Index from 'ignore' path
return result
if tz is not None:
if result.tz is None:
result = result.tz_localize(tz)
else:
result = result.tz_convert(tz)
return result
elif getattr(arg, "ndim", 1) > 1:
raise TypeError(
"arg must be a string, datetime, list, tuple, 1-d array, or Series"
)
# warn if passing timedelta64, raise for PeriodDtype
# NB: this must come after unit transformation
orig_arg = arg
try:
arg, _ = maybe_convert_dtype(arg, copy=False)
except TypeError:
if errors == "coerce":
result = np.array(["NaT"], dtype="datetime64[ns]").repeat(len(arg))
return DatetimeIndex(result, name=name)
elif errors == "ignore":
result = Index(arg, name=name)
return result
raise
arg = ensure_object(arg)
require_iso8601 = False
if infer_datetime_format and format is None:
format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst)
if format is not None:
# There is a special fast-path for iso8601 formatted
# datetime strings, so in those cases don't use the inferred
# format because this path makes process slower in this
# special case
format_is_iso8601 = _format_is_iso(format)
if format_is_iso8601:
require_iso8601 = not infer_datetime_format
format = None
tz_parsed = None
result = None
if format is not None:
try:
# shortcut formatting here
if format == "%Y%m%d":
try:
# pass orig_arg as float-dtype may have been converted to
# datetime64[ns]
orig_arg = ensure_object(orig_arg)
result = _attempt_YYYYMMDD(orig_arg, errors=errors)
except (ValueError, TypeError, tslibs.OutOfBoundsDatetime) as err:
raise ValueError(
"cannot convert the input to '%Y%m%d' date format"
) from err
# fallback
if result is None:
try:
result, timezones = array_strptime(
arg, format, exact=exact, errors=errors
)
if "%Z" in format or "%z" in format:
return _return_parsed_timezone_results(
result, timezones, tz, name
)
except tslibs.OutOfBoundsDatetime:
if errors == "raise":
raise
elif errors == "coerce":
result = np.empty(arg.shape, dtype="M8[ns]")
iresult = result.view("i8")
iresult.fill(tslibs.iNaT)
else:
result = arg
except ValueError:
# if format was inferred, try falling back
# to array_to_datetime - terminate here
# for specified formats
if not infer_datetime_format:
if errors == "raise":
raise
elif errors == "coerce":
result = np.empty(arg.shape, dtype="M8[ns]")
iresult = result.view("i8")
iresult.fill(tslibs.iNaT)
else:
result = arg
except ValueError as e:
# Fallback to try to convert datetime objects if timezone-aware
# datetime objects are found without passing `utc=True`
try:
values, tz = conversion.datetime_to_datetime64(arg)
dta = DatetimeArray(values, dtype=tz_to_dtype(tz))
return DatetimeIndex._simple_new(dta, name=name)
except (ValueError, TypeError):
raise e
if result is None:
assert format is None or infer_datetime_format
utc = tz == "utc"
result, tz_parsed = objects_to_datetime64ns(
arg,
dayfirst=dayfirst,
yearfirst=yearfirst,
utc=utc,
errors=errors,
require_iso8601=require_iso8601,
allow_object=True,
)
if tz_parsed is not None:
# We can take a shortcut since the datetime64 numpy array
# is in UTC
dta = DatetimeArray(result, dtype=tz_to_dtype(tz_parsed))
return DatetimeIndex._simple_new(dta, name=name)
utc = tz == "utc"
return _box_as_indexlike(result, utc=utc, name=name)
def _adjust_to_origin(arg, origin, unit):
"""
Helper function for to_datetime.
Adjust input argument to the specified origin
Parameters
----------
arg : list, tuple, ndarray, Series, Index
date to be adjusted
origin : 'julian' or Timestamp
origin offset for the arg
unit : string
passed unit from to_datetime, must be 'D'
Returns
-------
ndarray or scalar of adjusted date(s)
"""
if origin == "julian":
original = arg
j0 = Timestamp(0).to_julian_date()
if unit != "D":
raise ValueError("unit must be 'D' for origin='julian'")
try:
arg = arg - j0
except TypeError as err:
raise ValueError(
"incompatible 'arg' type for given 'origin'='julian'"
) from err
# preemptively check this for a nice range
j_max = Timestamp.max.to_julian_date() - j0
j_min = Timestamp.min.to_julian_date() - j0
if np.any(arg > j_max) or np.any(arg < j_min):
raise tslibs.OutOfBoundsDatetime(
f"{original} is Out of Bounds for origin='julian'"
)
else:
# arg must be numeric
if not (
(is_scalar(arg) and (is_integer(arg) or is_float(arg)))
or is_numeric_dtype(np.asarray(arg))
):
raise ValueError(
f"'{arg}' is not compatible with origin='{origin}'; "
"it must be numeric with a unit specified"
)
# we are going to offset back to unix / epoch time
try:
offset = Timestamp(origin)
except tslibs.OutOfBoundsDatetime as err:
raise tslibs.OutOfBoundsDatetime(
f"origin {origin} is Out of Bounds"
) from err
except ValueError as err:
raise ValueError(
f"origin {origin} cannot be converted to a Timestamp"
) from err
if offset.tz is not None:
raise ValueError(f"origin offset {offset} must be tz-naive")
offset -= Timestamp(0)
# convert the offset to the unit of the arg
# this should be lossless in terms of precision
offset = offset // tslibs.Timedelta(1, unit=unit)
# scalars & ndarray-like can handle the addition
if is_list_like(arg) and not isinstance(arg, (ABCSeries, Index, np.ndarray)):
arg = np.asarray(arg)
arg = arg + offset
return arg
@overload
def to_datetime(
arg: DatetimeScalar,
errors: str = ...,
dayfirst: bool = ...,
yearfirst: bool = ...,
utc: Optional[bool] = ...,
format: Optional[str] = ...,
exact: bool = ...,
unit: Optional[str] = ...,
infer_datetime_format: bool = ...,
origin=...,
cache: bool = ...,
) -> Union[DatetimeScalar, "NaTType"]:
...
@overload
def to_datetime(
arg: "Series",
errors: str = ...,
dayfirst: bool = ...,
yearfirst: bool = ...,
utc: Optional[bool] = ...,
format: Optional[str] = ...,
exact: bool = ...,
unit: Optional[str] = ...,
infer_datetime_format: bool = ...,
origin=...,
cache: bool = ...,
) -> "Series":
...
@overload
def to_datetime(
arg: Union[List, Tuple],
errors: str = ...,
dayfirst: bool = ...,
yearfirst: bool = ...,
utc: Optional[bool] = ...,
format: Optional[str] = ...,
exact: bool = ...,
unit: Optional[str] = ...,
infer_datetime_format: bool = ...,
origin=...,
cache: bool = ...,
) -> DatetimeIndex:
...
def to_datetime(
arg: DatetimeScalarOrArrayConvertible,
errors: str = "raise",
dayfirst: bool = False,
yearfirst: bool = False,
utc: Optional[bool] = None,
format: Optional[str] = None,
exact: bool = True,
unit: Optional[str] = None,
infer_datetime_format: bool = False,
origin="unix",
cache: bool = True,
) -> Union[DatetimeIndex, "Series", DatetimeScalar, "NaTType"]:
"""
Convert argument to datetime.
Parameters
----------
arg : int, float, str, datetime, list, tuple, 1-d array, Series, DataFrame/dict-like
The object to convert to a datetime.
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
- If 'raise', then invalid parsing will raise an exception.
- If 'coerce', then invalid parsing will be set as NaT.
- If 'ignore', then invalid parsing will return the input.
dayfirst : bool, default False
Specify a date parse order if `arg` is str or its list-likes.
If True, parses dates with the day first, eg 10/11/12 is parsed as
2012-11-10.
Warning: dayfirst=True is not strict, but will prefer to parse
with day first (this is a known bug, based on dateutil behavior).
yearfirst : bool, default False
Specify a date parse order if `arg` is str or its list-likes.
- If True parses dates with the year first, eg 10/11/12 is parsed as
2010-11-12.
- If both dayfirst and yearfirst are True, yearfirst is preceded (same
as dateutil).
Warning: yearfirst=True is not strict, but will prefer to parse
with year first (this is a known bug, based on dateutil behavior).
utc : bool, default None
Return UTC DatetimeIndex if True (converting any tz-aware
datetime.datetime objects as well).
format : str, default None
The strftime to parse time, eg "%d/%m/%Y", note that "%f" will parse
all the way up to nanoseconds.
See strftime documentation for more information on choices:
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior.
exact : bool, True by default
Behaves as:
- If True, require an exact format match.
- If False, allow the format to match anywhere in the target string.
unit : str, default 'ns'
The unit of the arg (D,s,ms,us,ns) denote the unit, which is an
integer or float number. This will be based off the origin.
Example, with unit='ms' and origin='unix' (the default), this
would calculate the number of milliseconds to the unix epoch start.
infer_datetime_format : bool, default False
If True and no `format` is given, attempt to infer the format of the
datetime strings based on the first non-NaN element,
and if it can be inferred, switch to a faster method of parsing them.
In some cases this can increase the parsing speed by ~5-10x.
origin : scalar, default 'unix'
Define the reference date. The numeric values would be parsed as number
of units (defined by `unit`) since this reference date.
- If 'unix' (or POSIX) time; origin is set to 1970-01-01.
- If 'julian', unit must be 'D', and origin is set to beginning of
Julian Calendar. Julian day number 0 is assigned to the day starting
at noon on January 1, 4713 BC.
- If Timestamp convertible, origin is set to Timestamp identified by
origin.
cache : bool, default True
If True, use a cache of unique, converted dates to apply the datetime
conversion. May produce significant speed-up when parsing duplicate
date strings, especially ones with timezone offsets. The cache is only
used when there are at least 50 values. The presence of out-of-bounds
values will render the cache unusable and may slow down parsing.
.. versionadded:: 0.23.0
.. versionchanged:: 0.25.0
- changed default value from False to True.
Returns
-------
datetime
If parsing succeeded.
Return type depends on input:
- list-like: DatetimeIndex
- Series: Series of datetime64 dtype
- scalar: Timestamp
In case when it is not possible to return designated types (e.g. when
any element of input is before Timestamp.min or after Timestamp.max)
return will have datetime.datetime type (or corresponding
array/Series).
See Also
--------
DataFrame.astype : Cast argument to a specified dtype.
to_timedelta : Convert argument to timedelta.
convert_dtypes : Convert dtypes.
Examples
--------
Assembling a datetime from multiple columns of a DataFrame. The keys can be
common abbreviations like ['year', 'month', 'day', 'minute', 'second',
'ms', 'us', 'ns']) or plurals of the same
>>> df = pd.DataFrame({'year': [2015, 2016],
... 'month': [2, 3],
... 'day': [4, 5]})
>>> pd.to_datetime(df)
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
If a date does not meet the `timestamp limitations
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
#timeseries-timestamp-limits>`_, passing errors='ignore'
will return the original input instead of raising any exception.
Passing errors='coerce' will force an out-of-bounds date to NaT,
in addition to forcing non-dates (or non-parseable dates) to NaT.
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore')
datetime.datetime(1300, 1, 1, 0, 0)
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
NaT
Passing infer_datetime_format=True can often-times speedup a parsing
if its not an ISO8601 format exactly, but in a regular format.
>>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000'] * 1000)
>>> s.head()
0 3/11/2000
1 3/12/2000
2 3/13/2000
3 3/11/2000
4 3/12/2000
dtype: object
>>> %timeit pd.to_datetime(s, infer_datetime_format=True) # doctest: +SKIP
100 loops, best of 3: 10.4 ms per loop
>>> %timeit pd.to_datetime(s, infer_datetime_format=False) # doctest: +SKIP
1 loop, best of 3: 471 ms per loop
Using a unix epoch time
>>> pd.to_datetime(1490195805, unit='s')
Timestamp('2017-03-22 15:16:45')
>>> pd.to_datetime(1490195805433502912, unit='ns')
Timestamp('2017-03-22 15:16:45.433502912')
.. warning:: For float arg, precision rounding might happen. To prevent
unexpected behavior use a fixed-width exact type.
Using a non-unix epoch origin
>>> pd.to_datetime([1, 2, 3], unit='D',
... origin=pd.Timestamp('1960-01-01'))
DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], \
dtype='datetime64[ns]', freq=None)
"""
if arg is None:
return None
if origin != "unix":
arg = _adjust_to_origin(arg, origin, unit)
tz = "utc" if utc else None
convert_listlike = partial(
_convert_listlike_datetimes,
tz=tz,
unit=unit,
dayfirst=dayfirst,
yearfirst=yearfirst,
errors=errors,
exact=exact,
infer_datetime_format=infer_datetime_format,
)
if isinstance(arg, Timestamp):
result = arg
if tz is not None:
if arg.tz is not None:
result = result.tz_convert(tz)
else:
result = result.tz_localize(tz)
elif isinstance(arg, ABCSeries):
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
if not cache_array.empty:
result = arg.map(cache_array)
else:
values = convert_listlike(arg._values, format)
result = arg._constructor(values, index=arg.index, name=arg.name)
elif isinstance(arg, (ABCDataFrame, abc.MutableMapping)):
result = _assemble_from_unit_mappings(arg, errors, tz)
elif isinstance(arg, Index):
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
if not cache_array.empty:
result = _convert_and_box_cache(arg, cache_array, name=arg.name)
else:
result = convert_listlike(arg, format, name=arg.name)
elif is_list_like(arg):
try:
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
except tslibs.OutOfBoundsDatetime:
# caching attempts to create a DatetimeIndex, which may raise
# an OOB. If that's the desired behavior, then just reraise...
if errors == "raise":
raise
# ... otherwise, continue without the cache.
from pandas import Series
cache_array = Series([], dtype=object) # just an empty array
if not cache_array.empty:
result = _convert_and_box_cache(arg, cache_array)
else:
result = convert_listlike(arg, format)
else:
result = convert_listlike(np.array([arg]), format)[0]
return result
# mappings for assembling units
_unit_map = {
"year": "year",
"years": "year",
"month": "month",
"months": "month",
"day": "day",
"days": "day",
"hour": "h",
"hours": "h",
"minute": "m",
"minutes": "m",
"second": "s",
"seconds": "s",
"ms": "ms",
"millisecond": "ms",
"milliseconds": "ms",
"us": "us",
"microsecond": "us",
"microseconds": "us",
"ns": "ns",
"nanosecond": "ns",
"nanoseconds": "ns",
}
def _assemble_from_unit_mappings(arg, errors, tz):
"""
assemble the unit specified fields from the arg (DataFrame)
Return a Series for actual parsing
Parameters
----------
arg : DataFrame
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
- If 'raise', then invalid parsing will raise an exception
- If 'coerce', then invalid parsing will be set as NaT
- If 'ignore', then invalid parsing will return the input
tz : None or 'utc'
Returns
-------
Series
"""
from pandas import to_timedelta, to_numeric, DataFrame
arg = DataFrame(arg)
if not arg.columns.is_unique:
raise ValueError("cannot assemble with duplicate keys")
# replace passed unit with _unit_map
def f(value):
if value in _unit_map:
return _unit_map[value]
# m is case significant
if value.lower() in _unit_map:
return _unit_map[value.lower()]
return value
unit = {k: f(k) for k in arg.keys()}
unit_rev = {v: k for k, v in unit.items()}
# we require at least Ymd
required = ["year", "month", "day"]
req = sorted(set(required) - set(unit_rev.keys()))
if len(req):
_required = ",".join(req)
raise ValueError(
"to assemble mappings requires at least that "
f"[year, month, day] be specified: [{_required}] is missing"
)
# keys we don't recognize
excess = sorted(set(unit_rev.keys()) - set(_unit_map.values()))
if len(excess):
_excess = ",".join(excess)
raise ValueError(
f"extra keys have been passed to the datetime assemblage: [{_excess}]"
)
def coerce(values):
# we allow coercion to if errors allows
values = to_numeric(values, errors=errors)
# prevent overflow in case of int8 or int16
if is_integer_dtype(values):
values = values.astype("int64", copy=False)
return values
values = (
coerce(arg[unit_rev["year"]]) * 10000
+ coerce(arg[unit_rev["month"]]) * 100
+ coerce(arg[unit_rev["day"]])
)
try:
values = to_datetime(values, format="%Y%m%d", errors=errors, utc=tz)
except (TypeError, ValueError) as err:
raise ValueError(f"cannot assemble the datetimes: {err}") from err
for u in ["h", "m", "s", "ms", "us", "ns"]:
value = unit_rev.get(u)
if value is not None and value in arg:
try:
values += to_timedelta(coerce(arg[value]), unit=u, errors=errors)
except (TypeError, ValueError) as err:
raise ValueError(
f"cannot assemble the datetimes [{value}]: {err}"
) from err
return values
def _attempt_YYYYMMDD(arg, errors):
"""
try to parse the YYYYMMDD/%Y%m%d format, try to deal with NaT-like,
arg is a passed in as an object dtype, but could really be ints/strings
with nan-like/or floats (e.g. with nan)
Parameters
----------
arg : passed value
errors : 'raise','ignore','coerce'
"""
def calc(carg):
# calculate the actual result
carg = carg.astype(object)
parsed = parsing.try_parse_year_month_day(
carg / 10000, carg / 100 % 100, carg % 100
)
return tslib.array_to_datetime(parsed, errors=errors)[0]
def calc_with_mask(carg, mask):
result = np.empty(carg.shape, dtype="M8[ns]")
iresult = result.view("i8")
iresult[~mask] = tslibs.iNaT
masked_result = calc(carg[mask].astype(np.float64).astype(np.int64))
result[mask] = masked_result.astype("M8[ns]")
return result
# try intlike / strings that are ints
try:
return calc(arg.astype(np.int64))
except (ValueError, OverflowError, TypeError):
pass
# a float with actual np.nan
try:
carg = arg.astype(np.float64)
return calc_with_mask(carg, notna(carg))
except (ValueError, OverflowError, TypeError):
pass
# string with NaN-like
try:
mask = ~algorithms.isin(arg, list(tslibs.nat_strings))
return calc_with_mask(arg, mask)
except (ValueError, OverflowError, TypeError):
pass
return None
def to_time(arg, format=None, infer_time_format=False, errors="raise"):