forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmissing.py
786 lines (628 loc) · 23.8 KB
/
missing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
"""
Routines for filling missing data.
"""
from typing import Any, Optional
import numpy as np
from pandas._libs import algos, lib
from pandas.compat._optional import import_optional_dependency
from pandas.core.dtypes.cast import infer_dtype_from_array
from pandas.core.dtypes.common import (
ensure_float64,
is_datetime64_dtype,
is_datetime64tz_dtype,
is_integer_dtype,
is_numeric_v_string_like,
is_scalar,
is_timedelta64_dtype,
needs_i8_conversion,
)
from pandas.core.dtypes.missing import isna
def mask_missing(arr, values_to_mask):
"""
Return a masking array of same size/shape as arr
with entries equaling any member of values_to_mask set to True
"""
dtype, values_to_mask = infer_dtype_from_array(values_to_mask)
try:
values_to_mask = np.array(values_to_mask, dtype=dtype)
except Exception:
values_to_mask = np.array(values_to_mask, dtype=object)
na_mask = isna(values_to_mask)
nonna = values_to_mask[~na_mask]
mask = None
for x in nonna:
if mask is None:
if is_numeric_v_string_like(arr, x):
# GH#29553 prevent numpy deprecation warnings
mask = False
else:
mask = arr == x
# if x is a string and arr is not, then we get False and we must
# expand the mask to size arr.shape
if is_scalar(mask):
mask = np.zeros(arr.shape, dtype=bool)
else:
if is_numeric_v_string_like(arr, x):
# GH#29553 prevent numpy deprecation warnings
mask |= False
else:
mask |= arr == x
if na_mask.any():
if mask is None:
mask = isna(arr)
else:
mask |= isna(arr)
# GH 21977
if mask is None:
mask = np.zeros(arr.shape, dtype=bool)
return mask
def clean_fill_method(method, allow_nearest=False):
# asfreq is compat for resampling
if method in [None, "asfreq"]:
return None
if isinstance(method, str):
method = method.lower()
if method == "ffill":
method = "pad"
elif method == "bfill":
method = "backfill"
valid_methods = ["pad", "backfill"]
expecting = "pad (ffill) or backfill (bfill)"
if allow_nearest:
valid_methods.append("nearest")
expecting = "pad (ffill), backfill (bfill) or nearest"
if method not in valid_methods:
raise ValueError(f"Invalid fill method. Expecting {expecting}. Got {method}")
return method
# interpolation methods that dispatch to np.interp
NP_METHODS = ["linear", "time", "index", "values"]
# interpolation methods that dispatch to _interpolate_scipy_wrapper
SP_METHODS = [
"nearest",
"zero",
"slinear",
"quadratic",
"cubic",
"barycentric",
"krogh",
"spline",
"polynomial",
"from_derivatives",
"piecewise_polynomial",
"pchip",
"akima",
"cubicspline",
]
def clean_interp_method(method: str, **kwargs) -> str:
order = kwargs.get("order")
if method in ("spline", "polynomial") and order is None:
raise ValueError("You must specify the order of the spline or polynomial.")
valid = NP_METHODS + SP_METHODS
if method not in valid:
raise ValueError(f"method must be one of {valid}. Got '{method}' instead.")
return method
def find_valid_index(values, how: str):
"""
Retrieves the index of the first valid value.
Parameters
----------
values : ndarray or ExtensionArray
how : {'first', 'last'}
Use this parameter to change between the first or last valid index.
Returns
-------
int or None
"""
assert how in ["first", "last"]
if len(values) == 0: # early stop
return None
is_valid = ~isna(values)
if values.ndim == 2:
is_valid = is_valid.any(1) # reduce axis 1
if how == "first":
idxpos = is_valid[::].argmax()
if how == "last":
idxpos = len(values) - 1 - is_valid[::-1].argmax()
chk_notna = is_valid[idxpos]
if not chk_notna:
return None
return idxpos
def interpolate_1d(
xvalues: np.ndarray,
yvalues: np.ndarray,
method: Optional[str] = "linear",
limit: Optional[int] = None,
limit_direction: str = "forward",
limit_area: Optional[str] = None,
fill_value: Optional[Any] = None,
bounds_error: bool = False,
order: Optional[int] = None,
**kwargs,
):
"""
Logic for the 1-d interpolation. The result should be 1-d, inputs
xvalues and yvalues will each be 1-d arrays of the same length.
Bounds_error is currently hardcoded to False since non-scipy ones don't
take it as an argument.
"""
invalid = isna(yvalues)
valid = ~invalid
if not valid.any():
# have to call np.asarray(xvalues) since xvalues could be an Index
# which can't be mutated
result = np.empty_like(np.asarray(xvalues), dtype=np.float64)
result.fill(np.nan)
return result
if valid.all():
return yvalues
if method == "time":
if not getattr(xvalues, "is_all_dates", None):
# if not issubclass(xvalues.dtype.type, np.datetime64):
raise ValueError(
"time-weighted interpolation only works "
"on Series or DataFrames with a "
"DatetimeIndex"
)
method = "values"
valid_limit_directions = ["forward", "backward", "both"]
limit_direction = limit_direction.lower()
if limit_direction not in valid_limit_directions:
raise ValueError(
"Invalid limit_direction: expecting one of "
f"{valid_limit_directions}, got '{limit_direction}'."
)
if limit_area is not None:
valid_limit_areas = ["inside", "outside"]
limit_area = limit_area.lower()
if limit_area not in valid_limit_areas:
raise ValueError(
f"Invalid limit_area: expecting one of {valid_limit_areas}, got "
f"{limit_area}."
)
# default limit is unlimited GH #16282
limit = algos._validate_limit(nobs=None, limit=limit)
if limit_direction == "forward":
nans_to_interpolate = _interp_limit(invalid, limit, 0)
elif limit_direction == "backward":
nans_to_interpolate = _interp_limit(invalid, 0, limit)
else:
# both directions... just use _interp_limit
nans_to_interpolate = _interp_limit(invalid, limit, limit)
# if limit_area is set, add either mid or outside indices
# to preserve_nans GH #16284
if limit_area:
first = find_valid_index(yvalues, "first")
last = find_valid_index(yvalues, "last")
if limit_area == "inside":
# preserve NaNs on the outside
nans_to_interpolate[:first] = False
nans_to_interpolate[last + 1 :] = False
else:
# preserve NaNs on the inside
nans_to_interpolate[first : last + 1] = False
yvalues = getattr(yvalues, "values", yvalues)
result = yvalues.copy()
# xvalues to pass to NumPy/SciPy
xvalues = getattr(xvalues, "values", xvalues)
if method == "linear":
inds = xvalues
else:
inds = np.asarray(xvalues)
# hack for DatetimeIndex, #1646
if needs_i8_conversion(inds.dtype):
inds = inds.view(np.int64)
if method in ("values", "index"):
if inds.dtype == np.object_:
inds = lib.maybe_convert_objects(inds)
if method in NP_METHODS:
# np.interp requires sorted X values, #21037
indexer = np.argsort(inds[valid])
result[nans_to_interpolate] = np.interp(
inds[nans_to_interpolate], inds[valid][indexer], yvalues[valid][indexer]
)
else:
result[nans_to_interpolate] = _interpolate_scipy_wrapper(
inds[valid],
yvalues[valid],
inds[nans_to_interpolate],
method=method,
fill_value=fill_value,
bounds_error=bounds_error,
order=order,
**kwargs,
)
return result
def _interpolate_scipy_wrapper(
x, y, new_x, method, fill_value=None, bounds_error=False, order=None, **kwargs
):
"""
Passed off to scipy.interpolate.interp1d. method is scipy's kind.
Returns an array interpolated at new_x. Add any new methods to
the list in _clean_interp_method.
"""
extra = f"{method} interpolation requires SciPy."
import_optional_dependency("scipy", extra=extra)
from scipy import interpolate
new_x = np.asarray(new_x)
# ignores some kwargs that could be passed along.
alt_methods = {
"barycentric": interpolate.barycentric_interpolate,
"krogh": interpolate.krogh_interpolate,
"from_derivatives": _from_derivatives,
"piecewise_polynomial": _from_derivatives,
}
if getattr(x, "is_all_dates", False):
# GH 5975, scipy.interp1d can't handle datetime64s
x, new_x = x._values.astype("i8"), new_x.astype("i8")
if method == "pchip":
alt_methods["pchip"] = interpolate.pchip_interpolate
elif method == "akima":
alt_methods["akima"] = _akima_interpolate
elif method == "cubicspline":
alt_methods["cubicspline"] = _cubicspline_interpolate
interp1d_methods = [
"nearest",
"zero",
"slinear",
"quadratic",
"cubic",
"polynomial",
]
if method in interp1d_methods:
if method == "polynomial":
method = order
terp = interpolate.interp1d(
x, y, kind=method, fill_value=fill_value, bounds_error=bounds_error
)
new_y = terp(new_x)
elif method == "spline":
# GH #10633, #24014
if isna(order) or (order <= 0):
raise ValueError(
f"order needs to be specified and greater than 0; got order: {order}"
)
terp = interpolate.UnivariateSpline(x, y, k=order, **kwargs)
new_y = terp(new_x)
else:
# GH 7295: need to be able to write for some reason
# in some circumstances: check all three
if not x.flags.writeable:
x = x.copy()
if not y.flags.writeable:
y = y.copy()
if not new_x.flags.writeable:
new_x = new_x.copy()
method = alt_methods[method]
new_y = method(x, y, new_x, **kwargs)
return new_y
def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False):
"""
Convenience function for interpolate.BPoly.from_derivatives.
Construct a piecewise polynomial in the Bernstein basis, compatible
with the specified values and derivatives at breakpoints.
Parameters
----------
xi : array_like
sorted 1D array of x-coordinates
yi : array_like or list of array-likes
yi[i][j] is the j-th derivative known at xi[i]
order: None or int or array_like of ints. Default: None.
Specifies the degree of local polynomials. If not None, some
derivatives are ignored.
der : int or list
How many derivatives to extract; None for all potentially nonzero
derivatives (that is a number equal to the number of points), or a
list of derivatives to extract. This number includes the function
value as 0th derivative.
extrapolate : bool, optional
Whether to extrapolate to ouf-of-bounds points based on first and last
intervals, or to return NaNs. Default: True.
See Also
--------
scipy.interpolate.BPoly.from_derivatives
Returns
-------
y : scalar or array_like
The result, of length R or length M or M by R.
"""
from scipy import interpolate
# return the method for compat with scipy version & backwards compat
method = interpolate.BPoly.from_derivatives
m = method(xi, yi.reshape(-1, 1), orders=order, extrapolate=extrapolate)
return m(x)
def _akima_interpolate(xi, yi, x, der=0, axis=0):
"""
Convenience function for akima interpolation.
xi and yi are arrays of values used to approximate some function f,
with ``yi = f(xi)``.
See `Akima1DInterpolator` for details.
Parameters
----------
xi : array_like
A sorted list of x-coordinates, of length N.
yi : array_like
A 1-D array of real values. `yi`'s length along the interpolation
axis must be equal to the length of `xi`. If N-D array, use axis
parameter to select correct axis.
x : scalar or array_like
Of length M.
der : int, optional
How many derivatives to extract; None for all potentially
nonzero derivatives (that is a number equal to the number
of points), or a list of derivatives to extract. This number
includes the function value as 0th derivative.
axis : int, optional
Axis in the yi array corresponding to the x-coordinate values.
See Also
--------
scipy.interpolate.Akima1DInterpolator
Returns
-------
y : scalar or array_like
The result, of length R or length M or M by R,
"""
from scipy import interpolate
P = interpolate.Akima1DInterpolator(xi, yi, axis=axis)
return P(x, nu=der)
def _cubicspline_interpolate(xi, yi, x, axis=0, bc_type="not-a-knot", extrapolate=None):
"""
Convenience function for cubic spline data interpolator.
See `scipy.interpolate.CubicSpline` for details.
Parameters
----------
xi : array_like, shape (n,)
1-d array containing values of the independent variable.
Values must be real, finite and in strictly increasing order.
yi : array_like
Array containing values of the dependent variable. It can have
arbitrary number of dimensions, but the length along ``axis``
(see below) must match the length of ``x``. Values must be finite.
x : scalar or array_like, shape (m,)
axis : int, optional
Axis along which `y` is assumed to be varying. Meaning that for
``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``.
Default is 0.
bc_type : string or 2-tuple, optional
Boundary condition type. Two additional equations, given by the
boundary conditions, are required to determine all coefficients of
polynomials on each segment [2]_.
If `bc_type` is a string, then the specified condition will be applied
at both ends of a spline. Available conditions are:
* 'not-a-knot' (default): The first and second segment at a curve end
are the same polynomial. It is a good default when there is no
information on boundary conditions.
* 'periodic': The interpolated functions is assumed to be periodic
of period ``x[-1] - x[0]``. The first and last value of `y` must be
identical: ``y[0] == y[-1]``. This boundary condition will result in
``y'[0] == y'[-1]`` and ``y''[0] == y''[-1]``.
* 'clamped': The first derivative at curves ends are zero. Assuming
a 1D `y`, ``bc_type=((1, 0.0), (1, 0.0))`` is the same condition.
* 'natural': The second derivative at curve ends are zero. Assuming
a 1D `y`, ``bc_type=((2, 0.0), (2, 0.0))`` is the same condition.
If `bc_type` is a 2-tuple, the first and the second value will be
applied at the curve start and end respectively. The tuple values can
be one of the previously mentioned strings (except 'periodic') or a
tuple `(order, deriv_values)` allowing to specify arbitrary
derivatives at curve ends:
* `order`: the derivative order, 1 or 2.
* `deriv_value`: array_like containing derivative values, shape must
be the same as `y`, excluding ``axis`` dimension. For example, if
`y` is 1D, then `deriv_value` must be a scalar. If `y` is 3D with
the shape (n0, n1, n2) and axis=2, then `deriv_value` must be 2D
and have the shape (n0, n1).
extrapolate : {bool, 'periodic', None}, optional
If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs. If 'periodic',
periodic extrapolation is used. If None (default), ``extrapolate`` is
set to 'periodic' for ``bc_type='periodic'`` and to True otherwise.
See Also
--------
scipy.interpolate.CubicHermiteSpline
Returns
-------
y : scalar or array_like
The result, of shape (m,)
References
----------
.. [1] `Cubic Spline Interpolation
<https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation>`_
on Wikiversity.
.. [2] Carl de Boor, "A Practical Guide to Splines", Springer-Verlag, 1978.
"""
from scipy import interpolate
P = interpolate.CubicSpline(
xi, yi, axis=axis, bc_type=bc_type, extrapolate=extrapolate
)
return P(x)
def interpolate_2d(
values, method="pad", axis=0, limit=None, fill_value=None, dtype=None
):
"""
Perform an actual interpolation of values, values will be make 2-d if
needed fills inplace, returns the result.
"""
orig_values = values
transf = (lambda x: x) if axis == 0 else (lambda x: x.T)
# reshape a 1 dim if needed
ndim = values.ndim
if values.ndim == 1:
if axis != 0: # pragma: no cover
raise AssertionError("cannot interpolate on a ndim == 1 with axis != 0")
values = values.reshape(tuple((1,) + values.shape))
if fill_value is None:
mask = None
else: # todo create faster fill func without masking
mask = mask_missing(transf(values), fill_value)
method = clean_fill_method(method)
if method == "pad":
values = transf(pad_2d(transf(values), limit=limit, mask=mask, dtype=dtype))
else:
values = transf(
backfill_2d(transf(values), limit=limit, mask=mask, dtype=dtype)
)
# reshape back
if ndim == 1:
values = values[0]
if orig_values.dtype.kind == "M":
# convert float back to datetime64
values = values.astype(orig_values.dtype)
return values
def _cast_values_for_fillna(values, dtype):
"""
Cast values to a dtype that algos.pad and algos.backfill can handle.
"""
# TODO: for int-dtypes we make a copy, but for everything else this
# alters the values in-place. Is this intentional?
if (
is_datetime64_dtype(dtype)
or is_datetime64tz_dtype(dtype)
or is_timedelta64_dtype(dtype)
):
values = values.view(np.int64)
elif is_integer_dtype(values):
# NB: this check needs to come after the datetime64 check above
values = ensure_float64(values)
return values
def _fillna_prep(values, mask=None, dtype=None):
# boilerplate for pad_1d, backfill_1d, pad_2d, backfill_2d
if dtype is None:
dtype = values.dtype
if mask is None:
# This needs to occur before datetime/timedeltas are cast to int64
mask = isna(values)
values = _cast_values_for_fillna(values, dtype)
mask = mask.view(np.uint8)
return values, mask
def pad_1d(values, limit=None, mask=None, dtype=None):
values, mask = _fillna_prep(values, mask, dtype)
algos.pad_inplace(values, mask, limit=limit)
return values
def backfill_1d(values, limit=None, mask=None, dtype=None):
values, mask = _fillna_prep(values, mask, dtype)
algos.backfill_inplace(values, mask, limit=limit)
return values
def pad_2d(values, limit=None, mask=None, dtype=None):
values, mask = _fillna_prep(values, mask, dtype)
if np.all(values.shape):
algos.pad_2d_inplace(values, mask, limit=limit)
else:
# for test coverage
pass
return values
def backfill_2d(values, limit=None, mask=None, dtype=None):
values, mask = _fillna_prep(values, mask, dtype)
if np.all(values.shape):
algos.backfill_2d_inplace(values, mask, limit=limit)
else:
# for test coverage
pass
return values
_fill_methods = {"pad": pad_1d, "backfill": backfill_1d}
def get_fill_func(method):
method = clean_fill_method(method)
return _fill_methods[method]
def clean_reindex_fill_method(method):
return clean_fill_method(method, allow_nearest=True)
def _interp_limit(
invalid: np.ndarray, fw_limit: Optional[int], bw_limit: Optional[int]
) -> np.ndarray:
"""
Update mask to exclude elements not within limits
Parameters
----------
invalid : boolean ndarray
fw_limit : int or None
forward limit to index
bw_limit : int or None
backward limit to index
Returns
-------
boolean ndarray
Notes
-----
There follows a description of the implementation used for creating a mask
for forward interpolation with a limit. To create a backwards fill, we first
reverse the array and use the same algorithm.
To fill in both directions we combine the masks from both forward and backwards
fills.
Say we start with the following array
array([nan, nan, 1., 3., nan, nan, nan, 11., nan, nan])
create (or get from masked arrays) a boolean array of missing values
>>> arr = pd.core.missing.isna(arr)
>>> arr
array([ True, True, False, False, True, True, True, False, True,
True])
we convert the boolean array to integer array for counting the streaks
>>> arr = arr.astype(int)
>>> arr
array([1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
cumsum will get us off to a good start, we store this as we will need this later
>>> cumsum = arr.cumsum()
>>> cumsum
array([1, 2, 2, 2, 3, 4, 5, 5, 6, 7], dtype=int32)
multiplying this accumulation with the original array of ones to get non-zero
values where we originally had ones
>>> arr = cumsum * arr
>>> arr
array([1, 2, 0, 0, 3, 4, 5, 0, 6, 7])
the previous result is close to what we want, but we want to restart
each streak at one. start by using the diff method to substract the previous
value for each element
>>> arr = np.diff(arr, prepend=0)
>>> arr
array([ 1, 1, -2, 0, 3, 1, 1, -5, 6, 1])
a negative value now represents the end of a streak of missing values
so let's first select just the negative values
>>> arr = np.where(arr < 0, arr, 0)
>>> arr
array([ 0, 0, -2, 0, 0, 0, 0, -5, 0, 0])
we will need to propegate the negative values
>>> arr = np.minimum.accumulate(arr)
>>> arr
array([ 0, 0, -2, -2, -2, -2, -2, -5, -5, -5], dtype=int32)
and then subtract the excess accumlation
>>> arr = arr + cumsum
>>> arr
array([1, 2, 0, 0, 1, 2, 3, 0, 1, 2], dtype=int32)
remember that positive values represent missing values and zeros represent
valid values. We have a array with some missing values at the start. For a
forward fill algorithm, we want to update the mask to leave these missing
values unchanged.
>>> arr[: arr.argmin()] = 0
>>> arr
array([0, 0, 0, 0, 1, 2, 3, 0, 1, 2], dtype=int32)
we will now select only values within a set limit, say 2
>>> arr = np.where(arr > 2, 0, arr)
>>> arr
array([0, 0, 0, 0, 1, 2, 0, 0, 1, 2], dtype=int32)
and finally convert back into a boolean mask
>>> arr.astype(bool)
array([ False, False, False, False, True, True, False, False, True,
True])
"""
def inner(arr, limit):
arr = arr.astype(int)
arr[: arr.argmin()] = 0
if limit:
cumsum = arr.cumsum()
arr = cumsum * arr
arr = np.diff(arr)
arr = np.pad(arr, (1, 0))
arr = np.where(arr < 0, arr, 0)
arr = np.minimum.accumulate(arr)
arr = arr + cumsum
arr = np.where(arr > limit, 0, arr)
return arr.astype(bool)
if fw_limit == 0:
f_idx = invalid
else:
f_idx = inner(invalid, fw_limit)
if bw_limit == 0:
# then we don't even need to care about backwards
# just use forwards
return f_idx
else:
b_idx = inner(invalid[::-1], bw_limit)[::-1]
if fw_limit == 0:
return b_idx
return f_idx | b_idx