|
38 | 38 | NAN_REDUCE_METHODS = ['argmax', 'argmin', 'max', 'min', 'mean', 'prod', 'sum',
|
39 | 39 | 'std', 'var', 'median']
|
40 | 40 | NAN_CUM_METHODS = ['cumsum', 'cumprod']
|
41 |
| -BOTTLENECK_ROLLING_METHODS = {'move_sum': 'sum', 'move_mean': 'mean', |
42 |
| - 'move_std': 'std', 'move_min': 'min', |
43 |
| - 'move_max': 'max', 'move_var': 'var', |
44 |
| - 'move_argmin': 'argmin', 'move_argmax': 'argmax', |
45 |
| - 'move_median': 'median'} |
46 | 41 | # TODO: wrap take, dot, sort
|
47 | 42 |
|
48 | 43 |
|
|
103 | 98 | If fewer than min_count non-NA values are present the result will
|
104 | 99 | be NA. New in version 0.10.8: Added with the default being None."""
|
105 | 100 |
|
106 |
| -_ROLLING_REDUCE_DOCSTRING_TEMPLATE = """\ |
107 |
| -Reduce this {da_or_ds}'s data windows by applying `{name}` along its dimension. |
108 |
| -
|
109 |
| -Parameters |
110 |
| ----------- |
111 |
| -**kwargs : dict |
112 |
| - Additional keyword arguments passed on to `{name}`. |
113 |
| -
|
114 |
| -Returns |
115 |
| -------- |
116 |
| -reduced : {da_or_ds} |
117 |
| - New {da_or_ds} object with `{name}` applied along its rolling dimnension. |
118 |
| -""" |
119 |
| - |
120 | 101 | _COARSEN_REDUCE_DOCSTRING_TEMPLATE = """\
|
121 | 102 | Coarsen this object by applying `{name}` along its dimensions.
|
122 | 103 |
|
@@ -236,13 +217,6 @@ def func(self, *args, **kwargs):
|
236 | 217 | return func
|
237 | 218 |
|
238 | 219 |
|
239 |
| -def rolling_count(rolling): |
240 |
| - |
241 |
| - rolling_count = rolling._counts() |
242 |
| - enough_periods = rolling_count >= rolling._min_periods |
243 |
| - return rolling_count.where(enough_periods) |
244 |
| - |
245 |
| - |
246 | 220 | def inject_reduce_methods(cls):
|
247 | 221 | methods = ([(name, getattr(duck_array_ops, 'array_%s' % name), False)
|
248 | 222 | for name in REDUCE_METHODS] +
|
@@ -340,55 +314,6 @@ def inject_all_ops_and_reduce_methods(cls, priority=50, array_only=True):
|
340 | 314 | inject_cum_methods(cls)
|
341 | 315 |
|
342 | 316 |
|
343 |
| -def inject_bottleneck_rolling_methods(cls): |
344 |
| - # standard numpy reduce methods |
345 |
| - methods = [(name, getattr(duck_array_ops, name)) |
346 |
| - for name in NAN_REDUCE_METHODS] |
347 |
| - for name, f in methods: |
348 |
| - func = cls._reduce_method(f) |
349 |
| - func.__name__ = name |
350 |
| - func.__doc__ = _ROLLING_REDUCE_DOCSTRING_TEMPLATE.format( |
351 |
| - name=func.__name__, da_or_ds='DataArray') |
352 |
| - setattr(cls, name, func) |
353 |
| - |
354 |
| - # bottleneck doesn't offer rolling_count, so we construct it ourselves |
355 |
| - func = rolling_count |
356 |
| - func.__name__ = 'count' |
357 |
| - func.__doc__ = _ROLLING_REDUCE_DOCSTRING_TEMPLATE.format( |
358 |
| - name=func.__name__, da_or_ds='DataArray') |
359 |
| - setattr(cls, 'count', func) |
360 |
| - |
361 |
| - # bottleneck rolling methods |
362 |
| - if not has_bottleneck: |
363 |
| - return |
364 |
| - |
365 |
| - for bn_name, method_name in BOTTLENECK_ROLLING_METHODS.items(): |
366 |
| - f = getattr(bn, bn_name) |
367 |
| - func = cls._bottleneck_reduce(f) |
368 |
| - func.__name__ = method_name |
369 |
| - func.__doc__ = _ROLLING_REDUCE_DOCSTRING_TEMPLATE.format( |
370 |
| - name=func.__name__, da_or_ds='DataArray') |
371 |
| - setattr(cls, method_name, func) |
372 |
| - |
373 |
| - |
374 |
| -def inject_datasetrolling_methods(cls): |
375 |
| - # standard numpy reduce methods |
376 |
| - methods = [(name, getattr(duck_array_ops, name)) |
377 |
| - for name in NAN_REDUCE_METHODS] |
378 |
| - for name, f in methods: |
379 |
| - func = cls._reduce_method(f) |
380 |
| - func.__name__ = name |
381 |
| - func.__doc__ = _ROLLING_REDUCE_DOCSTRING_TEMPLATE.format( |
382 |
| - name=func.__name__, da_or_ds='Dataset') |
383 |
| - setattr(cls, name, func) |
384 |
| - # bottleneck doesn't offer rolling_count, so we construct it ourselves |
385 |
| - func = rolling_count |
386 |
| - func.__name__ = 'count' |
387 |
| - func.__doc__ = _ROLLING_REDUCE_DOCSTRING_TEMPLATE.format( |
388 |
| - name=func.__name__, da_or_ds='Dataset') |
389 |
| - setattr(cls, 'count', func) |
390 |
| - |
391 |
| - |
392 | 317 | def inject_coarsen_methods(cls):
|
393 | 318 | # standard numpy reduce methods
|
394 | 319 | methods = [(name, getattr(duck_array_ops, name))
|
|
0 commit comments