1
+ <!-- Array libraries Tab Content -->
2
+ < li class ="array-libraries ">
3
+ < p >
4
+ Numpy array forms the core of the organically growing numeric
5
+ Python < b > array library</ b > ecosystem that now supports GPUs, sparse,
6
+ distributed arrays and more.
7
+ </ p >
8
+ < p >
9
+ Several of these newer libraries such as CuPy, Sparse and Dask,
10
+ implement the NumPy API adding support for modern user cases,
11
+ newer hardware and higher scalability of array computing. Other
12
+ array libraries such as Xarray, Tensor.ly consume NumPy API and
13
+ build newer functionality on top of it, thus enhancing array
14
+ computing in Python beyond Numpy capabilities.
15
+ </ p >
16
+ < table >
17
+ < tr class ="highlight-th ">
18
+ < td class ="bold-text "> </ td >
19
+ < td class ="bold-text "> Array Library</ td >
20
+ < td class ="bold-text "> Capabilities & Application areas</ td >
21
+ </ td >
22
+ </ tr >
23
+ < tr >
24
+ < td > < img class ="first-column-layout " src ="images/content_images/arlib/xarray.png " alt ="xarray "> </ td >
25
+ < td class ="full-center-text "> < a href ="https://xarray.pydata.org/en/stable/index.html "> Xarray</ a > </ td >
26
+ < td class ="left-text "> Labeled, indexed multidimensional arrays for advanced analytics and visualization</ td >
27
+ </ tr >
28
+ < tr >
29
+ < td > < img class ="first-column-layout " src ="images/content_images/arlib/uarray.png " alt ="uarray "> </ td >
30
+ < td class ="full-center-text "> < a href ="https://uarray.org/en/latest/ "> uarray</ a > </ td >
31
+ < td class ="left-text "> Python backend-system that decouples array computing library API definitions from
32
+ implementation to enhance NumPy code capabilities.</ td >
33
+ </ tr >
34
+ < tr >
35
+ < td > < img class ="first-column-layout " src ="images/content_images/arlib/xnd.png " alt ="xnd "> </ td >
36
+ < td class ="full-center-text "> < a href ="https://xnd.io "> XND</ a > </ td >
37
+ < td class ="left-text "> Container type that maps Python values to typed memory to accelerate financial,
38
+ insurance and scientific computing.</ td >
39
+ </ tr >
40
+ < tr >
41
+ < td > < img class ="first-column-layout " src ="images/content_images/arlib/xframes.png " alt ="xframe "> </ td >
42
+ < td class ="full-center-text "> < a href ="https://xframe.readthedocs.io/en/latest/index.html "> xframe</ a > </ td >
43
+ < td class ="left-text "> Multi-dimensional labelled array expressions and powerful abstractions for operating,
44
+ analyzing large datasets.</ td >
45
+ </ tr >
46
+ < tr >
47
+ < td > < img class ="first-column-layout " src ="images/content_images/arlib/sparse.png " alt ="sparse "> </ td >
48
+ < td class ="full-center-text "> < a href ="https://sparse.pydata.org/en/latest/ "> Sparse</ a > </ td >
49
+ < td class ="left-text "> Multi-dimensional arrays that integrate with SciPy-sparse, CuPy and Dask for Machine
50
+ Learning and data analytics.</ td >
51
+ </ tr >
52
+ < tr >
53
+ < td > < img class ="first-column-layout " src ="images/content_images/arlib/dask.png " alt ="Dask "> </ td >
54
+ < td class ="full-center-text "> < a href ="https://dask.org/ "> Dask</ a > </ td >
55
+ < td class ="left-text "> Distributed arrays, parallel computing for data analytics in geo-science, banking,
56
+ astronomy, satellite imagery and mobile network modeling.</ td >
57
+ </ tr >
58
+ < tr >
59
+ < td > < img class ="first-column-layout " src ="images/content_images/arlib/CuPy.png " alt ="CuPy "> </ td >
60
+ < td class ="full-center-text "> < a href ="https://cupy.chainer.org "> CuPy</ a > </ td >
61
+ < td class ="left-text "> NumPy-compatible matrix library accelerated by CUDA used to implement Neural Networks
62
+ for Deep Learning.</ td >
63
+ </ tr >
64
+ < tr >
65
+ < td > < img class ="first-column-layout " src ="images/content_images/arlib/tensorly.png " alt ="tensorly "> </ td >
66
+ < td class ="full-center-text "> < a href ="http://tensorly.org/stable/home.html "> Tensor.ly</ a > </ td >
67
+ < td class ="left-text "> Tensor learning, algebra and backend to seamlessly use NumPy, MXNet, PyTorch,
68
+ TensorFlow or CuPy for ML recommendation systems.</ td >
69
+ </ tr >
70
+ < tr >
71
+ < td class ="left-text "> < img class ="first-column-layout " src ="images/content_images/arlib/cuDF.png "
72
+ alt ="cudf "> </ td >
73
+ < td class ="full-center-text "> < a href ="https://github.com/rapidsai/cudf "> CuDF</ a > </ td >
74
+ < td class ="left-text "> GPU DataFrame library built on the Apache Arrow columnar memory format for loading,
75
+ joining, aggregating, filtering, and data wrangling.</ td >
76
+ </ tr >
77
+ < tr >
78
+ < td > < img class ="first-column-layout " src ="images/content_images/arlib/arrow.png " alt ="arrow "> </ td >
79
+ < td class ="full-center-text "> < a href ="https://github.com/apache/arrow "> Arrow</ a > </ td >
80
+ < td class ="left-text "> Cross-language platform that combines columnar data structure with in-memory data for
81
+ streaming analytics and interactive visualizations.</ td >
82
+ </ tr >
83
+ < tr >
84
+ < td > < img class ="first-column-layout " src ="images/content_images/arlib/xtensor.png " alt ="xtensor "> </ td >
85
+ < td class ="full-center-text "> < a href ="" https: //github.com/xtensor-stack/xtensor-python> xtensor </ a > </ td >
86
+ < td class ="left-text "> Multi-dimensional arrays with broadcasting and lazy computing for numerical
87
+ analysis.</ td >
88
+ </ tr >
89
+ < tr style ="border-bottom:2px solid #dddddd ">
90
+ < td colspan ="80% "> </ td >
91
+ </ tr >
92
+ </ table >
93
+ </ li >
0 commit comments