Skip to content

Commit e31c77d

Browse files
authored
Merge pull request numpy#153 from numpy/feature/86-tabs
Feature/86 cleaner style for Ecosystem tabs widget
2 parents 20f3d36 + 22df545 commit e31c77d

13 files changed

+526
-1382
lines changed

config.yaml

Lines changed: 1 addition & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -39,24 +39,7 @@ params:
3939
- title: Open source
4040
text: Distributed under a liberal [BSD license](https://github.com/numpy/numpy/blob/master/LICENSE.txt), NumPy is developed and maintained publicly on GitHub by a vibrant, responsive and diverse community.
4141
tabs:
42-
title: Ecosystem
43-
subtitle:
44-
tiles:
45-
- title: App builder
46-
icon: mouse-globe
47-
text: This is some explanatory text that is on two rows
48-
url: /
49-
buttonText: Free trial
50-
- title: Cloud integration
51-
icon: laptop-cloud
52-
text: This is some explanatory text that is on two rows
53-
url: /
54-
buttonText: Get started
55-
- title: Add-ons & plugins
56-
icon: plug-cloud
57-
text: This is some explanatory text that is on two rows
58-
url: /
59-
buttonText: Get started
42+
title: ECOSYSTEM
6043
section5: false
6144

6245
languages:

layouts/partials/array-libraries.html

Lines changed: 93 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,93 @@
1+
<!-- Array libraries Tab Content -->
2+
<li class="array-libraries">
3+
<p>
4+
Numpy array forms the core of the organically growing numeric
5+
Python <b>array library</b> ecosystem that now supports GPUs, sparse,
6+
distributed arrays and more.
7+
</p>
8+
<p>
9+
Several of these newer libraries such as CuPy, Sparse and Dask,
10+
implement the NumPy API adding support for modern user cases,
11+
newer hardware and higher scalability of array computing. Other
12+
array libraries such as Xarray, Tensor.ly consume NumPy API and
13+
build newer functionality on top of it, thus enhancing array
14+
computing in Python beyond Numpy capabilities.
15+
</p>
16+
<table>
17+
<tr class="highlight-th">
18+
<td class="bold-text"></td>
19+
<td class="bold-text">Array Library</td>
20+
<td class="bold-text">Capabilities & Application areas</td>
21+
</td>
22+
</tr>
23+
<tr>
24+
<td><img class="first-column-layout" src="images/content_images/arlib/xarray.png" alt="xarray"></td>
25+
<td class="full-center-text"><a href="https://xarray.pydata.org/en/stable/index.html">Xarray</a></td>
26+
<td class="left-text">Labeled, indexed multidimensional arrays for advanced analytics and visualization</td>
27+
</tr>
28+
<tr>
29+
<td><img class="first-column-layout" src="images/content_images/arlib/uarray.png" alt="uarray"></td>
30+
<td class="full-center-text"><a href="https://uarray.org/en/latest/">uarray</a></td>
31+
<td class="left-text">Python backend-system that decouples array computing library API definitions from
32+
implementation to enhance NumPy code capabilities.</td>
33+
</tr>
34+
<tr>
35+
<td><img class="first-column-layout" src="images/content_images/arlib/xnd.png" alt="xnd"></td>
36+
<td class="full-center-text"><a href="https://xnd.io">XND</a></td>
37+
<td class="left-text">Container type that maps Python values to typed memory to accelerate financial,
38+
insurance and scientific computing.</td>
39+
</tr>
40+
<tr>
41+
<td><img class="first-column-layout" src="images/content_images/arlib/xframes.png" alt="xframe"></td>
42+
<td class="full-center-text"><a href="https://xframe.readthedocs.io/en/latest/index.html">xframe</a></td>
43+
<td class="left-text">Multi-dimensional labelled array expressions and powerful abstractions for operating,
44+
analyzing large datasets.</td>
45+
</tr>
46+
<tr>
47+
<td><img class="first-column-layout" src="images/content_images/arlib/sparse.png" alt="sparse"></td>
48+
<td class="full-center-text"><a href="https://sparse.pydata.org/en/latest/">Sparse</a></td>
49+
<td class="left-text">Multi-dimensional arrays that integrate with SciPy-sparse, CuPy and Dask for Machine
50+
Learning and data analytics.</td>
51+
</tr>
52+
<tr>
53+
<td><img class="first-column-layout" src="images/content_images/arlib/dask.png" alt="Dask"></td>
54+
<td class="full-center-text"><a href="https://dask.org/">Dask</a></td>
55+
<td class="left-text">Distributed arrays, parallel computing for data analytics in geo-science, banking,
56+
astronomy, satellite imagery and mobile network modeling.</td>
57+
</tr>
58+
<tr>
59+
<td><img class="first-column-layout" src="images/content_images/arlib/CuPy.png" alt="CuPy"></td>
60+
<td class="full-center-text"><a href="https://cupy.chainer.org">CuPy</a></td>
61+
<td class="left-text">NumPy-compatible matrix library accelerated by CUDA used to implement Neural Networks
62+
for Deep Learning.</td>
63+
</tr>
64+
<tr>
65+
<td><img class="first-column-layout" src="images/content_images/arlib/tensorly.png" alt="tensorly"></td>
66+
<td class="full-center-text"><a href="http://tensorly.org/stable/home.html">Tensor.ly</a></td>
67+
<td class="left-text">Tensor learning, algebra and backend to seamlessly use NumPy, MXNet, PyTorch,
68+
TensorFlow or CuPy for ML recommendation systems.</td>
69+
</tr>
70+
<tr>
71+
<td class="left-text"><img class="first-column-layout" src="images/content_images/arlib/cuDF.png"
72+
alt="cudf"></td>
73+
<td class="full-center-text"><a href="https://github.com/rapidsai/cudf">CuDF</a></td>
74+
<td class="left-text">GPU DataFrame library built on the Apache Arrow columnar memory format for loading,
75+
joining, aggregating, filtering, and data wrangling.</td>
76+
</tr>
77+
<tr>
78+
<td><img class="first-column-layout" src="images/content_images/arlib/arrow.png" alt="arrow"></td>
79+
<td class="full-center-text"><a href="https://github.com/apache/arrow">Arrow</a></td>
80+
<td class="left-text">Cross-language platform that combines columnar data structure with in-memory data for
81+
streaming analytics and interactive visualizations.</td>
82+
</tr>
83+
<tr>
84+
<td><img class="first-column-layout" src="images/content_images/arlib/xtensor.png" alt="xtensor"></td>
85+
<td class="full-center-text"><a href="" https://github.com/xtensor-stack/xtensor-python>xtensor </a> </td>
86+
<td class="left-text">Multi-dimensional arrays with broadcasting and lazy computing for numerical
87+
analysis.</td>
88+
</tr>
89+
<tr style="border-bottom:2px solid #dddddd">
90+
<td colspan="80%"></td>
91+
</tr>
92+
</table>
93+
</li>

layouts/partials/css.html

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -14,17 +14,15 @@
1414
<link rel="stylesheet" type="text/css" href="{{ $css.RelPermalink }}" integrity="{{ $css.Data.Integrity }}">
1515
{{- end }}
1616
<link rel="stylesheet" type="text/css" href="{{ "css/icons.css" | relURL }}">
17-
<!-- Custom CSS -->
18-
<link rel="stylesheet" type="text/css" href="{{ "css/styles.css" | relURL }}" />
19-
<link rel="stylesheet" type="text/css" href="{{ "css/shell.css" | relURL }}" />
20-
<link rel="stylesheet" type="text/css" href="{{ "css/section2.css" | relURL }}" />
21-
<link rel="stylesheet" type="text/css" href="{{ "css/content.css" | relURL }}" />
2217
<!-- Numpy Favicon -->
2318
<link rel="icon" type="image/png" href="{{ "images/favicon.png" | relURL }}" />
2419
<!-- Google Fonts - Ubuntu -->
2520
<link href="https://fonts.googleapis.com/css?family=Ubuntu&display=swap" rel="stylesheet">
2621
<link href="https://fonts.googleapis.com/css?family=Rubik&display=swap" rel="stylesheet">
2722
<link href="https://fonts.googleapis.com/css?family=Lato:400,900&display=swap" rel="stylesheet">
2823
<link href="https://fonts.googleapis.com/css?family=Source+Code+Pro&display=swap" rel="stylesheet">
29-
<!-- Tabs CSS -->
24+
<!-- Custom CSS -->
25+
<link rel="stylesheet" type="text/css" href="{{ "css/styles.css" | relURL }}" />
26+
<link rel="stylesheet" type="text/css" href="{{ "css/shell.css" | relURL }}" />
3027
<link rel="stylesheet" type="text/css" href="{{ "css/tabs.css" | relURL }}" />
28+
<link rel="stylesheet" type="text/css" href="{{ "css/content.css" | relURL }}" />

layouts/partials/data-science.html

Lines changed: 62 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,62 @@
1+
<!-- Data Science Tab Content -->
2+
<li class="data-science">
3+
<div class="grid-container">
4+
<div>
5+
<img src="images/content_images/ds-landscape.png" alt="ds-landscape" align="left">
6+
</div>
7+
<div>
8+
<p>
9+
Data Science makes it possible to analyze massive amounts of data
10+
and gain meaningful insights. A typical data science workflow involves
11+
various techniques and tools such as:
12+
<ul class="content-tab">
13+
<li><b>Extract, Transform, Load (ETL):</b> Pandas, Beautiful Soup, Intake</li>
14+
<li><b>Explore:</b> Seaborn, Matplotlib</li>
15+
<li><b>Model:</b> Scikit-learn, SciPy, statsmodels</li>
16+
<li><b>Evaluate:</b> NumPy, TensorFlow </li>
17+
<li>
18+
<b>Presentation:</b>
19+
<a href="./index.html/#tab-visual"> Data Visualization Tools</a>
20+
</li>
21+
</ul>
22+
</p>
23+
</div>
24+
</div>
25+
<div class="grid-container">
26+
<div>
27+
<p>
28+
Python has a rich ecosystem of libraries that enable Data Science workflows
29+
. <b> NumPy</b> is the foundation of almost all of these tools.
30+
<a href="https://pandas.pydata.org">
31+
</p>
32+
<p>
33+
<a href="https://pandas.pydata.org">Pandas</a>helps in data discovery and handling,
34+
<a href="https://intake.readthedocs.io/en/latest/"> Intake</a> helps with
35+
data access and distribution, while
36+
<a href="https://www.crummy.com/software/BeautifulSoup/">Beautiful Soup</a>
37+
is widely used for web-scraping and gathering data sets.
38+
<a href="https://seaborn.pydata.org"> Seaborn</a> is well known for its
39+
<a href="https://towardsdatascience.com/how-to-perform-exploratory-data-analysis-with-seaborn-97e3413e841d">exploratory data analysis (EDA)</a>
40+
capabilities, <a href="https://scikit-learn.org">Scikit-learn</a> and
41+
<a href="https://www.scipy.org">Scipy</a> (statistical computing) serve some
42+
of the backbone processes required for machine learning (regression methods,
43+
classification, clustering, model validation and selection).
44+
Statistical data exploration, estimation of various statistical models
45+
and conducting statistical tests are some of the functions offered by
46+
<a href="https://www.statsmodels.org/stable/index.html"> statsmodels</a>.
47+
</p>
48+
</div>
49+
<div>
50+
<img src="images/content_images/data-science.png" alt="data science" align="centre" width="75%">
51+
</div>
52+
</div>
53+
<p>
54+
Effective data analytics require deep knowledge of the data domain (e.g.,
55+
Retail, Healthcare, Marketing, Finance, Social Media, Automation, Sales, Travel,
56+
etc.) as well as other core disciplines of Data Science, Data Engineering and
57+
Data Visualization. Tools such as <a href="https://mlflow.org">MLFlow</a> address
58+
experiment hyper-parameter and result tracking needs, while
59+
<a href="https://dvc.org"> DVC</a> provide data version control for data science
60+
and machine learning workflows.
61+
</p>
62+
</li>

layouts/partials/javascript.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,9 +5,9 @@
55
<script src="https://cdnjs.cloudflare.com/ajax/libs/modernizr/2.8.3/modernizr.min.js"></script>
66
<!-- Font Awesome -->
77
<script src="https://kit.fontawesome.com/9e9265cc6d.js"></script>
8-
<!-- Tabs.js -->
9-
<script src="{{ "js/tabs-main.js" | relURL }}"></script>
10-
<script src="{{ "js/tabs-utils.js" | relURL }}"></script>
8+
<!-- UIkit -->
9+
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/uikit.min.js"></script>
10+
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/uikit.min.css" />
1111
<!-- Thebe Configuration -->
1212
<script type="text/x-thebe-config">
1313
{
Lines changed: 61 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,61 @@
1+
<!-- Machine Learning Tab Content -->
2+
<li class="machine-learning">
3+
<div class="grid-container">
4+
<div class="animation-holder">
5+
<a href="https://ai.googleblog.com/2016/12/open-sourcing-embedding-projector-tool.html">
6+
<img src="images/content_images/ml_img/tensorflow-ml-anim.gif" alt="Tensorflow-embedding-projector" align="middle" class="animation-img">
7+
</a>
8+
<p>
9+
<i style="font-size:80%;">
10+
<a href="https://ai.googleblog.com/2016/12/open-sourcing-embedding-projector-tool.html">Source: Google AI Blog</a>
11+
</i>
12+
</p>
13+
</div>
14+
<div>
15+
<p>
16+
<b>Machine learning</b> (ML) enables computers to learn using
17+
data, without having to be explicitly programmed.
18+
<b>NumPy</b> is the foundation of all data pre-processing
19+
that happens in the implementation of several ML Algorithms.
20+
</p>
21+
<p>
22+
Python’s rich machine language and deep learning ecosystem
23+
provides powerful tools such as
24+
<a href="https://scikit-learn.org/stable/">Scikit-learn</a>
25+
that is built on top of NumPy and
26+
<a href="https://www.scipy.org">SciPy</a> and offers data
27+
mining and analytics using classical ML algorithms.
28+
</p>
29+
<p>
30+
<a href="https://www.tensorflow.org">Tensorflow’s</a>
31+
deep learning capabilities help to define and run
32+
computations involving tensors that have broad
33+
applications in Speech and image recognition, Text-based
34+
applications, Time-Series analysis and Video Detection.
35+
<a href="https://pytorch.org">PyTorch </a> is another deep
36+
learning library that is very popular among researchers for
37+
computer vision and NLP applications. <a href="https://github.com/apache/incubator-mxnet">MXNet</a>
38+
is another AI package that provides blueprints and
39+
templates for deep learning.
40+
</p>
41+
</div>
42+
</div>
43+
<div>
44+
<div>
45+
<p>
46+
Statistical techniques called
47+
<a href="https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205">Ensemble</a>
48+
methods such as binning,
49+
bagging, stacking and boosting are widely used in various ML
50+
algorithms implemented by tools such as
51+
<a href="https://github.com/dmlc/xgboost">XGBoost</a>,
52+
<a href="https://lightgbm.readthedocs.io/en/latest/">LightGBM</a>,
53+
<a href="https://catboost.ai">CatBoost</a> - one of the
54+
fastest inference engines.
55+
<a href="https://www.scikit-yb.org/en/latest/">Yellowbrick</a>,
56+
<a href="https://eli5.readthedocs.io/en/latest/">Eli5</a>
57+
offer machine learning visualizations.
58+
</p>
59+
</div>
60+
</div>
61+
</li>

0 commit comments

Comments
 (0)