forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
991 lines (840 loc) · 39.2 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
"""
Arithmetic operations for PandasObjects
This is not a public API.
"""
# necessary to enforce truediv in Python 2.X
from __future__ import division
import operator
import numpy as np
import pandas as pd
from pandas import compat, lib, tslib
import pandas.index as _index
from pandas.util.decorators import Appender
import pandas.core.common as com
import pandas.computation.expressions as expressions
from pandas.core.common import(bind_method, is_list_like, notnull, isnull,
_values_from_object, _maybe_match_name)
# -----------------------------------------------------------------------------
# Functions that add arithmetic methods to objects, given arithmetic factory
# methods
def _create_methods(arith_method, radd_func, comp_method, bool_method,
use_numexpr, special=False, default_axis='columns'):
# creates actual methods based upon arithmetic, comp and bool method
# constructors.
# NOTE: Only frame cares about default_axis, specifically: special methods
# have default axis None, whereas flex methods have default axis 'columns'
# if we're not using numexpr, then don't pass a str_rep
if use_numexpr:
op = lambda x: x
else:
op = lambda x: None
if special:
def names(x):
if x[-1] == "_":
return "__%s_" % x
else:
return "__%s__" % x
else:
names = lambda x: x
radd_func = radd_func or operator.add
# Inframe, all special methods have default_axis=None, flex methods have
# default_axis set to the default (columns)
new_methods = dict(
add=arith_method(operator.add, names('add'), op('+'),
default_axis=default_axis),
radd=arith_method(radd_func, names('radd'), op('+'),
default_axis=default_axis),
sub=arith_method(operator.sub, names('sub'), op('-'),
default_axis=default_axis),
mul=arith_method(operator.mul, names('mul'), op('*'),
default_axis=default_axis),
truediv=arith_method(operator.truediv, names('truediv'), op('/'),
truediv=True, fill_zeros=np.inf,
default_axis=default_axis),
floordiv=arith_method(operator.floordiv, names('floordiv'), op('//'),
default_axis=default_axis, fill_zeros=np.inf),
# Causes a floating point exception in the tests when numexpr
# enabled, so for now no speedup
mod=arith_method(operator.mod, names('mod'), None,
default_axis=default_axis, fill_zeros=np.nan),
pow=arith_method(operator.pow, names('pow'), op('**'),
default_axis=default_axis),
# not entirely sure why this is necessary, but previously was included
# so it's here to maintain compatibility
rmul=arith_method(operator.mul, names('rmul'), op('*'),
default_axis=default_axis, reversed=True),
rsub=arith_method(lambda x, y: y - x, names('rsub'), op('-'),
default_axis=default_axis, reversed=True),
rtruediv=arith_method(lambda x, y: operator.truediv(y, x),
names('rtruediv'), op('/'), truediv=True,
fill_zeros=np.inf, default_axis=default_axis,
reversed=True),
rfloordiv=arith_method(lambda x, y: operator.floordiv(y, x),
names('rfloordiv'), op('//'),
default_axis=default_axis, fill_zeros=np.inf,
reversed=True),
rpow=arith_method(lambda x, y: y ** x, names('rpow'), op('**'),
default_axis=default_axis, reversed=True),
rmod=arith_method(lambda x, y: y % x, names('rmod'), op('%'),
default_axis=default_axis, reversed=True),
)
new_methods['div'] = new_methods['truediv']
new_methods['rdiv'] = new_methods['rtruediv']
# Comp methods never had a default axis set
if comp_method:
new_methods.update(dict(
eq=comp_method(operator.eq, names('eq'), op('==')),
ne=comp_method(operator.ne, names('ne'), op('!='), masker=True),
lt=comp_method(operator.lt, names('lt'), op('<')),
gt=comp_method(operator.gt, names('gt'), op('>')),
le=comp_method(operator.le, names('le'), op('<=')),
ge=comp_method(operator.ge, names('ge'), op('>=')),
))
if bool_method:
new_methods.update(dict(
and_=bool_method(operator.and_, names('and_'), op('&')),
or_=bool_method(operator.or_, names('or_'), op('|')),
# For some reason ``^`` wasn't used in original.
xor=bool_method(operator.xor, names('xor'), op('^')),
rand_=bool_method(lambda x, y: operator.and_(y, x),
names('rand_'), op('&')),
ror_=bool_method(lambda x, y: operator.or_(y, x), names('ror_'), op('|')),
rxor=bool_method(lambda x, y: operator.xor(y, x), names('rxor'), op('^'))
))
new_methods = dict((names(k), v) for k, v in new_methods.items())
return new_methods
def add_methods(cls, new_methods, force, select, exclude):
if select and exclude:
raise TypeError("May only pass either select or exclude")
methods = new_methods
if select:
select = set(select)
methods = {}
for key, method in new_methods.items():
if key in select:
methods[key] = method
if exclude:
for k in exclude:
new_methods.pop(k, None)
for name, method in new_methods.items():
if force or name not in cls.__dict__:
bind_method(cls, name, method)
#----------------------------------------------------------------------
# Arithmetic
def add_special_arithmetic_methods(cls, arith_method=None, radd_func=None,
comp_method=None, bool_method=None,
use_numexpr=True, force=False, select=None,
exclude=None):
"""
Adds the full suite of special arithmetic methods (``__add__``,
``__sub__``, etc.) to the class.
Parameters
----------
arith_method : function (optional)
factory for special arithmetic methods, with op string:
f(op, name, str_rep, default_axis=None, fill_zeros=None, **eval_kwargs)
radd_func : function (optional)
Possible replacement for ``operator.add`` for compatibility
comp_method : function, optional,
factory for rich comparison - signature: f(op, name, str_rep)
use_numexpr : bool, default True
whether to accelerate with numexpr, defaults to True
force : bool, default False
if False, checks whether function is defined **on ``cls.__dict__``**
before defining if True, always defines functions on class base
select : iterable of strings (optional)
if passed, only sets functions with names in select
exclude : iterable of strings (optional)
if passed, will not set functions with names in exclude
"""
radd_func = radd_func or operator.add
# in frame, special methods have default_axis = None, comp methods use
# 'columns'
new_methods = _create_methods(arith_method, radd_func, comp_method,
bool_method, use_numexpr, default_axis=None,
special=True)
# inplace operators (I feel like these should get passed an `inplace=True`
# or just be removed
new_methods.update(dict(
__iadd__=new_methods["__add__"],
__isub__=new_methods["__sub__"],
__imul__=new_methods["__mul__"],
__itruediv__=new_methods["__truediv__"],
__ipow__=new_methods["__pow__"]
))
if not compat.PY3:
new_methods["__idiv__"] = new_methods["__div__"]
add_methods(cls, new_methods=new_methods, force=force, select=select,
exclude=exclude)
def add_flex_arithmetic_methods(cls, flex_arith_method, radd_func=None,
flex_comp_method=None, flex_bool_method=None,
use_numexpr=True, force=False, select=None,
exclude=None):
"""
Adds the full suite of flex arithmetic methods (``pow``, ``mul``, ``add``)
to the class.
Parameters
----------
flex_arith_method : function (optional)
factory for special arithmetic methods, with op string:
f(op, name, str_rep, default_axis=None, fill_zeros=None, **eval_kwargs)
radd_func : function (optional)
Possible replacement for ``lambda x, y: operator.add(y, x)`` for
compatibility
flex_comp_method : function, optional,
factory for rich comparison - signature: f(op, name, str_rep)
use_numexpr : bool, default True
whether to accelerate with numexpr, defaults to True
force : bool, default False
if False, checks whether function is defined **on ``cls.__dict__``**
before defining if True, always defines functions on class base
select : iterable of strings (optional)
if passed, only sets functions with names in select
exclude : iterable of strings (optional)
if passed, will not set functions with names in exclude
"""
radd_func = radd_func or (lambda x, y: operator.add(y, x))
# in frame, default axis is 'columns', doesn't matter for series and panel
new_methods = _create_methods(
flex_arith_method, radd_func, flex_comp_method, flex_bool_method,
use_numexpr, default_axis='columns', special=False)
new_methods.update(dict(
multiply=new_methods['mul'],
subtract=new_methods['sub'],
divide=new_methods['div']
))
# opt out of bool flex methods for now
for k in ('ror_', 'rxor', 'rand_'):
if k in new_methods:
new_methods.pop(k)
add_methods(cls, new_methods=new_methods, force=force, select=select,
exclude=exclude)
class _TimeOp(object):
"""
Wrapper around Series datetime/time/timedelta arithmetic operations.
Generally, you should use classmethod ``maybe_convert_for_time_op`` as an
entry point.
"""
fill_value = tslib.iNaT
wrap_results = staticmethod(lambda x: x)
dtype = None
def __init__(self, left, right, name):
self.name = name
# need to make sure that we are aligning the data
if isinstance(left, pd.Series) and isinstance(right, pd.Series):
left, right = left.align(right,copy=False)
self.left = left
self.right = right
lvalues = self._convert_to_array(left, name=name)
rvalues = self._convert_to_array(right, name=name, other=lvalues)
self.is_timedelta_lhs = com.is_timedelta64_dtype(left)
self.is_datetime_lhs = com.is_datetime64_dtype(left)
self.is_integer_lhs = left.dtype.kind in ['i', 'u']
self.is_datetime_rhs = com.is_datetime64_dtype(rvalues)
self.is_timedelta_rhs = com.is_timedelta64_dtype(rvalues)
self.is_integer_rhs = rvalues.dtype.kind in ('i', 'u')
self._validate()
self._convert_for_datetime(lvalues, rvalues)
def _validate(self):
# timedelta and integer mul/div
if (self.is_timedelta_lhs and self.is_integer_rhs) or\
(self.is_integer_lhs and self.is_timedelta_rhs):
if self.name not in ('__truediv__', '__div__', '__mul__'):
raise TypeError("can only operate on a timedelta and an "
"integer for division, but the operator [%s]"
"was passed" % self.name)
# 2 datetimes
elif self.is_datetime_lhs and self.is_datetime_rhs:
if self.name != '__sub__':
raise TypeError("can only operate on a datetimes for"
" subtraction, but the operator [%s] was"
" passed" % self.name)
# 2 timedeltas
elif self.is_timedelta_lhs and self.is_timedelta_rhs:
if self.name not in ('__div__', '__truediv__', '__add__',
'__sub__'):
raise TypeError("can only operate on a timedeltas for "
"addition, subtraction, and division, but the"
" operator [%s] was passed" % self.name)
# datetime and timedelta
elif self.is_datetime_lhs and self.is_timedelta_rhs:
if self.name not in ('__add__', '__sub__'):
raise TypeError("can only operate on a datetime with a rhs of"
" a timedelta for addition and subtraction, "
" but the operator [%s] was passed" %
self.name)
elif self.is_timedelta_lhs and self.is_datetime_rhs:
if self.name != '__add__':
raise TypeError("can only operate on a timedelta and"
" a datetime for addition, but the operator"
" [%s] was passed" % self.name)
else:
raise TypeError('cannot operate on a series with out a rhs '
'of a series/ndarray of type datetime64[ns] '
'or a timedelta')
def _convert_to_array(self, values, name=None, other=None):
"""converts values to ndarray"""
from pandas.tseries.timedeltas import to_timedelta
coerce = True
if not is_list_like(values):
values = np.array([values])
inferred_type = lib.infer_dtype(values)
if inferred_type in ('datetime64', 'datetime', 'date', 'time'):
# if we have a other of timedelta, but use pd.NaT here we
# we are in the wrong path
if (other is not None and other.dtype == 'timedelta64[ns]' and
all(isnull(v) for v in values)):
values = np.empty(values.shape, dtype=other.dtype)
values[:] = tslib.iNaT
# a datelike
elif isinstance(values, pd.DatetimeIndex):
values = values.to_series()
elif not (isinstance(values, (np.ndarray, pd.Series)) and
com.is_datetime64_dtype(values)):
values = tslib.array_to_datetime(values)
elif inferred_type in ('timedelta', 'timedelta64'):
# have a timedelta, convert to to ns here
values = to_timedelta(values, coerce=coerce)
elif inferred_type == 'integer':
# py3 compat where dtype is 'm' but is an integer
if values.dtype.kind == 'm':
values = values.astype('timedelta64[ns]')
elif isinstance(values, pd.PeriodIndex):
values = values.to_timestamp().to_series()
elif name not in ('__truediv__', '__div__', '__mul__'):
raise TypeError("incompatible type for a datetime/timedelta "
"operation [{0}]".format(name))
elif isinstance(values[0], pd.DateOffset):
# handle DateOffsets
os = np.array([getattr(v, 'delta', None) for v in values])
mask = isnull(os)
if mask.any():
raise TypeError("cannot use a non-absolute DateOffset in "
"datetime/timedelta operations [{0}]".format(
', '.join([com.pprint_thing(v)
for v in values[mask]])))
values = to_timedelta(os, coerce=coerce)
elif inferred_type == 'floating':
# all nan, so ok, use the other dtype (e.g. timedelta or datetime)
if isnull(values).all():
values = np.empty(values.shape, dtype=other.dtype)
values[:] = tslib.iNaT
else:
raise TypeError(
'incompatible type [{0}] for a datetime/timedelta '
'operation'.format(np.array(values).dtype))
else:
raise TypeError("incompatible type [{0}] for a datetime/timedelta"
" operation".format(np.array(values).dtype))
return values
def _convert_for_datetime(self, lvalues, rvalues):
mask = None
# datetimes require views
if self.is_datetime_lhs or self.is_datetime_rhs:
# datetime subtraction means timedelta
if self.is_datetime_lhs and self.is_datetime_rhs:
self.dtype = 'timedelta64[ns]'
else:
self.dtype = 'datetime64[ns]'
mask = isnull(lvalues) | isnull(rvalues)
lvalues = lvalues.view(np.int64)
rvalues = rvalues.view(np.int64)
# otherwise it's a timedelta
else:
self.dtype = 'timedelta64[ns]'
mask = isnull(lvalues) | isnull(rvalues)
lvalues = lvalues.astype(np.int64)
rvalues = rvalues.astype(np.int64)
# time delta division -> unit less
# integer gets converted to timedelta in np < 1.6
if (self.is_timedelta_lhs and self.is_timedelta_rhs) and\
not self.is_integer_rhs and\
not self.is_integer_lhs and\
self.name in ('__div__', '__truediv__'):
self.dtype = 'float64'
self.fill_value = np.nan
lvalues = lvalues.astype(np.float64)
rvalues = rvalues.astype(np.float64)
# if we need to mask the results
if mask is not None:
if mask.any():
def f(x):
x = np.array(x, dtype=self.dtype)
np.putmask(x, mask, self.fill_value)
return x
self.wrap_results = f
self.lvalues = lvalues
self.rvalues = rvalues
@classmethod
def maybe_convert_for_time_op(cls, left, right, name):
"""
if ``left`` and ``right`` are appropriate for datetime arithmetic with
operation ``name``, processes them and returns a ``_TimeOp`` object
that stores all the required values. Otherwise, it will generate
either a ``NotImplementedError`` or ``None``, indicating that the
operation is unsupported for datetimes (e.g., an unsupported r_op) or
that the data is not the right type for time ops.
"""
# decide if we can do it
is_timedelta_lhs = com.is_timedelta64_dtype(left)
is_datetime_lhs = com.is_datetime64_dtype(left)
if not (is_datetime_lhs or is_timedelta_lhs):
return None
# rops are allowed. No need for special checks, just strip off
# r part.
if name.startswith('__r'):
name = "__" + name[3:]
return cls(left, right, name)
def _arith_method_SERIES(op, name, str_rep, fill_zeros=None,
default_axis=None, **eval_kwargs):
"""
Wrapper function for Series arithmetic operations, to avoid
code duplication.
"""
def na_op(x, y):
try:
result = expressions.evaluate(op, str_rep, x, y,
raise_on_error=True, **eval_kwargs)
except TypeError:
if isinstance(y, (np.ndarray, pd.Series, pd.Index)):
dtype = np.find_common_type([x.dtype, y.dtype], [])
result = np.empty(x.size, dtype=dtype)
mask = notnull(x) & notnull(y)
result[mask] = op(x[mask], _values_from_object(y[mask]))
elif isinstance(x, np.ndarray):
result = np.empty(len(x), dtype=x.dtype)
mask = notnull(x)
result[mask] = op(x[mask], y)
else:
raise TypeError("{typ} cannot perform the operation {op}".format(typ=type(x).__name__,op=str_rep))
result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)
result = com._fill_zeros(result, x, y, name, fill_zeros)
return result
def wrapper(left, right, name=name):
if isinstance(right, pd.DataFrame):
return NotImplemented
time_converted = _TimeOp.maybe_convert_for_time_op(left, right, name)
if time_converted is None:
lvalues, rvalues = left, right
dtype = None
wrap_results = lambda x: x
elif time_converted == NotImplemented:
return NotImplemented
else:
left, right = time_converted.left, time_converted.right
lvalues, rvalues = time_converted.lvalues, time_converted.rvalues
dtype = time_converted.dtype
wrap_results = time_converted.wrap_results
if isinstance(rvalues, pd.Series):
rindex = getattr(rvalues,'index',rvalues)
name = _maybe_match_name(left, rvalues)
lvalues = getattr(lvalues, 'values', lvalues)
rvalues = getattr(rvalues, 'values', rvalues)
if left.index.equals(rindex):
index = left.index
else:
index, lidx, ridx = left.index.join(rindex, how='outer',
return_indexers=True)
if lidx is not None:
lvalues = com.take_1d(lvalues, lidx)
if ridx is not None:
rvalues = com.take_1d(rvalues, ridx)
arr = na_op(lvalues, rvalues)
return left._constructor(wrap_results(arr), index=index,
name=name, dtype=dtype)
else:
# scalars
if hasattr(lvalues, 'values'):
lvalues = lvalues.values
return left._constructor(wrap_results(na_op(lvalues, rvalues)),
index=left.index, name=left.name,
dtype=dtype)
return wrapper
def _comp_method_SERIES(op, name, str_rep, masker=False):
"""
Wrapper function for Series arithmetic operations, to avoid
code duplication.
"""
def na_op(x, y):
if com.is_categorical_dtype(x) != (not np.isscalar(y) and com.is_categorical_dtype(y)):
msg = "Cannot compare a Categorical for op {op} with type {typ}. If you want to \n" \
"compare values, use 'series <op> np.asarray(cat)'."
raise TypeError(msg.format(op=op,typ=type(y)))
if x.dtype == np.object_:
if isinstance(y, list):
y = lib.list_to_object_array(y)
if isinstance(y, (np.ndarray, pd.Series)):
if y.dtype != np.object_:
result = lib.vec_compare(x, y.astype(np.object_), op)
else:
result = lib.vec_compare(x, y, op)
else:
result = lib.scalar_compare(x, y, op)
else:
try:
result = getattr(x, name)(y)
if result is NotImplemented:
raise TypeError("invalid type comparison")
except (AttributeError):
result = op(x, y)
return result
def wrapper(self, other):
if isinstance(other, pd.Series):
name = _maybe_match_name(self, other)
if len(self) != len(other):
raise ValueError('Series lengths must match to compare')
return self._constructor(na_op(self.values, other.values),
index=self.index, name=name)
elif isinstance(other, pd.DataFrame): # pragma: no cover
return NotImplemented
elif isinstance(other, (np.ndarray, pd.Index)):
if len(self) != len(other):
raise ValueError('Lengths must match to compare')
return self._constructor(na_op(self.values, np.asarray(other)),
index=self.index).__finalize__(self)
elif isinstance(other, pd.Categorical):
if not com.is_categorical_dtype(self):
msg = "Cannot compare a Categorical for op {op} with Series of dtype {typ}.\n"\
"If you want to compare values, use 'series <op> np.asarray(other)'."
raise TypeError(msg.format(op=op,typ=self.dtype))
else:
mask = isnull(self)
values = self.get_values()
other = _index.convert_scalar(values,_values_from_object(other))
if issubclass(values.dtype.type, (np.datetime64, np.timedelta64)):
values = values.view('i8')
# scalars
res = na_op(values, other)
if np.isscalar(res):
raise TypeError('Could not compare %s type with Series'
% type(other))
# always return a full value series here
res = _values_from_object(res)
res = pd.Series(res, index=self.index, name=self.name,
dtype='bool')
# mask out the invalids
if mask.any():
res[mask] = masker
return res
return wrapper
def _bool_method_SERIES(op, name, str_rep):
"""
Wrapper function for Series arithmetic operations, to avoid
code duplication.
"""
def na_op(x, y):
try:
result = op(x, y)
except TypeError:
if isinstance(y, list):
y = lib.list_to_object_array(y)
if isinstance(y, (np.ndarray, pd.Series)):
if (x.dtype == np.bool_ and
y.dtype == np.bool_): # pragma: no cover
result = op(x, y) # when would this be hit?
else:
x = com._ensure_object(x)
y = com._ensure_object(y)
result = lib.vec_binop(x, y, op)
else:
try:
# let null fall thru
if not isnull(y):
y = bool(y)
result = lib.scalar_binop(x, y, op)
except:
raise TypeError("cannot compare a dtyped [{0}] array with "
"a scalar of type [{1}]".format(
x.dtype, type(y).__name__))
return result
def wrapper(self, other):
if isinstance(other, pd.Series):
name = _maybe_match_name(self, other)
other = other.reindex_like(self).fillna(False).astype(bool)
return self._constructor(na_op(self.values, other.values),
index=self.index,
name=name).fillna(False).astype(bool)
elif isinstance(other, pd.DataFrame):
return NotImplemented
else:
# scalars
res = self._constructor(na_op(self.values, other),
index=self.index).fillna(False)
return res.astype(bool).__finalize__(self)
return wrapper
def _radd_compat(left, right):
radd = lambda x, y: y + x
# GH #353, NumPy 1.5.1 workaround
try:
output = radd(left, right)
except TypeError:
raise
return output
def _flex_method_SERIES(op, name, str_rep, default_axis=None,
fill_zeros=None, **eval_kwargs):
doc = """
Binary operator %s with support to substitute a fill_value for missing data
in one of the inputs
Parameters
----------
other: Series or scalar value
fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are
missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the
passed MultiIndex level
Returns
-------
result : Series
""" % name
@Appender(doc)
def flex_wrapper(self, other, level=None, fill_value=None, axis=0):
# validate axis
self._get_axis_number(axis)
if isinstance(other, pd.Series):
return self._binop(other, op, level=level, fill_value=fill_value)
elif isinstance(other, (np.ndarray, pd.Series, list, tuple)):
if len(other) != len(self):
raise ValueError('Lengths must be equal')
return self._binop(self._constructor(other, self.index), op,
level=level, fill_value=fill_value)
else:
return self._constructor(op(self.values, other),
self.index).__finalize__(self)
flex_wrapper.__name__ = name
return flex_wrapper
series_flex_funcs = dict(flex_arith_method=_flex_method_SERIES,
radd_func=_radd_compat,
flex_comp_method=_comp_method_SERIES)
series_special_funcs = dict(arith_method=_arith_method_SERIES,
radd_func=_radd_compat,
comp_method=_comp_method_SERIES,
bool_method=_bool_method_SERIES)
_arith_doc_FRAME = """
Binary operator %s with support to substitute a fill_value for missing data in
one of the inputs
Parameters
----------
other : Series, DataFrame, or constant
axis : {0, 1, 'index', 'columns'}
For Series input, axis to match Series index on
fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are
missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the
passed MultiIndex level
Notes
-----
Mismatched indices will be unioned together
Returns
-------
result : DataFrame
"""
def _arith_method_FRAME(op, name, str_rep=None, default_axis='columns',
fill_zeros=None, **eval_kwargs):
def na_op(x, y):
try:
result = expressions.evaluate(
op, str_rep, x, y, raise_on_error=True, **eval_kwargs)
except TypeError:
xrav = x.ravel()
if isinstance(y, (np.ndarray, pd.Series)):
dtype = np.find_common_type([x.dtype, y.dtype], [])
result = np.empty(x.size, dtype=dtype)
yrav = y.ravel()
mask = notnull(xrav) & notnull(yrav)
xrav = xrav[mask]
yrav = yrav[mask]
if np.prod(xrav.shape) and np.prod(yrav.shape):
result[mask] = op(xrav, yrav)
elif hasattr(x,'size'):
result = np.empty(x.size, dtype=x.dtype)
mask = notnull(xrav)
xrav = xrav[mask]
if np.prod(xrav.shape):
result[mask] = op(xrav, y)
else:
raise TypeError("cannot perform operation {op} between objects "
"of type {x} and {y}".format(op=name,x=type(x),y=type(y)))
result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)
result = result.reshape(x.shape)
result = com._fill_zeros(result, x, y, name, fill_zeros)
return result
@Appender(_arith_doc_FRAME % name)
def f(self, other, axis=default_axis, level=None, fill_value=None):
if isinstance(other, pd.DataFrame): # Another DataFrame
return self._combine_frame(other, na_op, fill_value, level)
elif isinstance(other, pd.Series):
return self._combine_series(other, na_op, fill_value, axis, level)
elif isinstance(other, (list, tuple)):
if axis is not None and self._get_axis_name(axis) == 'index':
# TODO: Get all of these to use _constructor_sliced
# casted = self._constructor_sliced(other, index=self.index)
casted = pd.Series(other, index=self.index)
else:
# casted = self._constructor_sliced(other, index=self.columns)
casted = pd.Series(other, index=self.columns)
return self._combine_series(casted, na_op, fill_value, axis, level)
elif isinstance(other, np.ndarray) and other.ndim: # skips np scalar
if other.ndim == 1:
if axis is not None and self._get_axis_name(axis) == 'index':
# casted = self._constructor_sliced(other,
# index=self.index)
casted = pd.Series(other, index=self.index)
else:
# casted = self._constructor_sliced(other,
# index=self.columns)
casted = pd.Series(other, index=self.columns)
return self._combine_series(casted, na_op, fill_value,
axis, level)
elif other.ndim == 2:
# casted = self._constructor(other, index=self.index,
# columns=self.columns)
casted = pd.DataFrame(other, index=self.index,
columns=self.columns)
return self._combine_frame(casted, na_op, fill_value, level)
else:
raise ValueError("Incompatible argument shape: %s" %
(other.shape, ))
else:
return self._combine_const(other, na_op)
f.__name__ = name
return f
# Masker unused for now
def _flex_comp_method_FRAME(op, name, str_rep=None, default_axis='columns',
masker=False):
def na_op(x, y):
try:
result = op(x, y)
except TypeError:
xrav = x.ravel()
result = np.empty(x.size, dtype=x.dtype)
if isinstance(y, (np.ndarray, pd.Series)):
yrav = y.ravel()
mask = notnull(xrav) & notnull(yrav)
result[mask] = op(np.array(list(xrav[mask])),
np.array(list(yrav[mask])))
else:
mask = notnull(xrav)
result[mask] = op(np.array(list(xrav[mask])), y)
if op == operator.ne: # pragma: no cover
np.putmask(result, ~mask, True)
else:
np.putmask(result, ~mask, False)
result = result.reshape(x.shape)
return result
@Appender('Wrapper for flexible comparison methods %s' % name)
def f(self, other, axis=default_axis, level=None):
if isinstance(other, pd.DataFrame): # Another DataFrame
return self._flex_compare_frame(other, na_op, str_rep, level)
elif isinstance(other, pd.Series):
return self._combine_series(other, na_op, None, axis, level)
elif isinstance(other, (list, tuple)):
if axis is not None and self._get_axis_name(axis) == 'index':
casted = pd.Series(other, index=self.index)
else:
casted = pd.Series(other, index=self.columns)
return self._combine_series(casted, na_op, None, axis, level)
elif isinstance(other, np.ndarray):
if other.ndim == 1:
if axis is not None and self._get_axis_name(axis) == 'index':
casted = pd.Series(other, index=self.index)
else:
casted = pd.Series(other, index=self.columns)
return self._combine_series(casted, na_op, None, axis, level)
elif other.ndim == 2:
casted = pd.DataFrame(other, index=self.index,
columns=self.columns)
return self._flex_compare_frame(casted, na_op, str_rep, level)
else:
raise ValueError("Incompatible argument shape: %s" %
(other.shape, ))
else:
return self._combine_const(other, na_op)
f.__name__ = name
return f
def _comp_method_FRAME(func, name, str_rep, masker=False):
@Appender('Wrapper for comparison method %s' % name)
def f(self, other):
if isinstance(other, pd.DataFrame): # Another DataFrame
return self._compare_frame(other, func, str_rep)
elif isinstance(other, pd.Series):
return self._combine_series_infer(other, func)
else:
# straight boolean comparisions we want to allow all columns
# (regardless of dtype to pass thru) See #4537 for discussion.
res = self._combine_const(other, func, raise_on_error=False)
return res.fillna(True).astype(bool)
f.__name__ = name
return f
frame_flex_funcs = dict(flex_arith_method=_arith_method_FRAME,
radd_func=_radd_compat,
flex_comp_method=_flex_comp_method_FRAME)
frame_special_funcs = dict(arith_method=_arith_method_FRAME,
radd_func=_radd_compat,
comp_method=_comp_method_FRAME,
bool_method=_arith_method_FRAME)
def _arith_method_PANEL(op, name, str_rep=None, fill_zeros=None,
default_axis=None, **eval_kwargs):
# copied from Series na_op above, but without unnecessary branch for
# non-scalar
def na_op(x, y):
try:
result = expressions.evaluate(op, str_rep, x, y,
raise_on_error=True, **eval_kwargs)
except TypeError:
# TODO: might need to find_common_type here?
result = np.empty(len(x), dtype=x.dtype)
mask = notnull(x)
result[mask] = op(x[mask], y)
result, changed = com._maybe_upcast_putmask(result, ~mask, np.nan)
result = com._fill_zeros(result, x, y, name, fill_zeros)
return result
# work only for scalars
def f(self, other):
if not np.isscalar(other):
raise ValueError('Simple arithmetic with %s can only be '
'done with scalar values' %
self._constructor.__name__)
return self._combine(other, op)
f.__name__ = name
return f
def _comp_method_PANEL(op, name, str_rep=None, masker=False):
def na_op(x, y):
try:
result = expressions.evaluate(op, str_rep, x, y,
raise_on_error=True)
except TypeError:
xrav = x.ravel()
result = np.empty(x.size, dtype=bool)
if isinstance(y, np.ndarray):
yrav = y.ravel()
mask = notnull(xrav) & notnull(yrav)
result[mask] = op(np.array(list(xrav[mask])),
np.array(list(yrav[mask])))
else:
mask = notnull(xrav)
result[mask] = op(np.array(list(xrav[mask])), y)
if op == operator.ne: # pragma: no cover
np.putmask(result, ~mask, True)
else:
np.putmask(result, ~mask, False)
result = result.reshape(x.shape)
return result
@Appender('Wrapper for comparison method %s' % name)
def f(self, other):
if isinstance(other, self._constructor):
return self._compare_constructor(other, na_op)
elif isinstance(other, (self._constructor_sliced, pd.DataFrame,
pd.Series)):
raise Exception("input needs alignment for this object [%s]" %
self._constructor)
else:
return self._combine_const(other, na_op)
f.__name__ = name
return f
panel_special_funcs = dict(arith_method=_arith_method_PANEL,
comp_method=_comp_method_PANEL,
bool_method=_arith_method_PANEL)