forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_assert_frame_equal.py
397 lines (309 loc) · 13.3 KB
/
test_assert_frame_equal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import pytest
import pandas as pd
from pandas import DataFrame
import pandas._testing as tm
@pytest.fixture(params=[True, False])
def by_blocks_fixture(request):
return request.param
def _assert_frame_equal_both(a, b, **kwargs):
"""
Check that two DataFrame equal.
This check is performed commutatively.
Parameters
----------
a : DataFrame
The first DataFrame to compare.
b : DataFrame
The second DataFrame to compare.
kwargs : dict
The arguments passed to `tm.assert_frame_equal`.
"""
tm.assert_frame_equal(a, b, **kwargs)
tm.assert_frame_equal(b, a, **kwargs)
@pytest.mark.parametrize("check_like", [True, False])
def test_frame_equal_row_order_mismatch(check_like, frame_or_series):
df1 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["a", "b", "c"])
df2 = DataFrame({"A": [3, 2, 1], "B": [6, 5, 4]}, index=["c", "b", "a"])
if not check_like: # Do not ignore row-column orderings.
msg = f"{frame_or_series.__name__}.index are different"
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(
df1, df2, check_like=check_like, obj=frame_or_series.__name__
)
else:
_assert_frame_equal_both(
df1, df2, check_like=check_like, obj=frame_or_series.__name__
)
@pytest.mark.parametrize(
"df1,df2",
[
({"A": [1, 2, 3]}, {"A": [1, 2, 3, 4]}),
({"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1, 2, 3]}),
],
)
def test_frame_equal_shape_mismatch(df1, df2, frame_or_series):
df1 = DataFrame(df1)
df2 = DataFrame(df2)
msg = f"{frame_or_series.__name__} are different"
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(df1, df2, obj=frame_or_series.__name__)
@pytest.mark.parametrize(
"df1,df2,msg",
[
# Index
(
DataFrame.from_records({"a": [1, 2], "c": ["l1", "l2"]}, index=["a"]),
DataFrame.from_records({"a": [1.0, 2.0], "c": ["l1", "l2"]}, index=["a"]),
"DataFrame\\.index are different",
),
# MultiIndex
(
DataFrame.from_records(
{"a": [1, 2], "b": [2.1, 1.5], "c": ["l1", "l2"]}, index=["a", "b"]
),
DataFrame.from_records(
{"a": [1.0, 2.0], "b": [2.1, 1.5], "c": ["l1", "l2"]}, index=["a", "b"]
),
"DataFrame\\.index level \\[0\\] are different",
),
],
)
def test_frame_equal_index_dtype_mismatch(df1, df2, msg, check_index_type):
kwargs = {"check_index_type": check_index_type}
if check_index_type:
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(df1, df2, **kwargs)
else:
tm.assert_frame_equal(df1, df2, **kwargs)
def test_empty_dtypes(check_dtype):
columns = ["col1", "col2"]
df1 = DataFrame(columns=columns)
df2 = DataFrame(columns=columns)
kwargs = {"check_dtype": check_dtype}
df1["col1"] = df1["col1"].astype("int64")
if check_dtype:
msg = r"Attributes of DataFrame\..* are different"
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(df1, df2, **kwargs)
else:
tm.assert_frame_equal(df1, df2, **kwargs)
@pytest.mark.parametrize("check_like", [True, False])
def test_frame_equal_index_mismatch(check_like, frame_or_series, using_infer_string):
if using_infer_string:
dtype = "str"
else:
dtype = "object"
msg = f"""{frame_or_series.__name__}\\.index are different
{frame_or_series.__name__}\\.index values are different \\(33\\.33333 %\\)
\\[left\\]: Index\\(\\['a', 'b', 'c'\\], dtype='{dtype}'\\)
\\[right\\]: Index\\(\\['a', 'b', 'd'\\], dtype='{dtype}'\\)
At positional index 2, first diff: c != d"""
df1 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["a", "b", "c"])
df2 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["a", "b", "d"])
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(
df1, df2, check_like=check_like, obj=frame_or_series.__name__
)
@pytest.mark.parametrize("check_like", [True, False])
def test_frame_equal_columns_mismatch(check_like, frame_or_series, using_infer_string):
if using_infer_string:
dtype = "str"
else:
dtype = "object"
msg = f"""{frame_or_series.__name__}\\.columns are different
{frame_or_series.__name__}\\.columns values are different \\(50\\.0 %\\)
\\[left\\]: Index\\(\\['A', 'B'\\], dtype='{dtype}'\\)
\\[right\\]: Index\\(\\['A', 'b'\\], dtype='{dtype}'\\)"""
df1 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["a", "b", "c"])
df2 = DataFrame({"A": [1, 2, 3], "b": [4, 5, 6]}, index=["a", "b", "c"])
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(
df1, df2, check_like=check_like, obj=frame_or_series.__name__
)
def test_frame_equal_block_mismatch(by_blocks_fixture, frame_or_series):
obj = frame_or_series.__name__
msg = f"""{obj}\\.iloc\\[:, 1\\] \\(column name="B"\\) are different
{obj}\\.iloc\\[:, 1\\] \\(column name="B"\\) values are different \\(33\\.33333 %\\)
\\[index\\]: \\[0, 1, 2\\]
\\[left\\]: \\[4, 5, 6\\]
\\[right\\]: \\[4, 5, 7\\]"""
df1 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df2 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 7]})
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(df1, df2, by_blocks=by_blocks_fixture, obj=obj)
@pytest.mark.parametrize(
"df1,df2,msg",
[
(
{"A": ["á", "à", "ä"], "E": ["é", "è", "ë"]},
{"A": ["á", "à", "ä"], "E": ["é", "è", "e̊"]},
"""{obj}\\.iloc\\[:, 1\\] \\(column name="E"\\) are different
{obj}\\.iloc\\[:, 1\\] \\(column name="E"\\) values are different \\(33\\.33333 %\\)
\\[index\\]: \\[0, 1, 2\\]
\\[left\\]: \\[é, è, ë\\]
\\[right\\]: \\[é, è, e̊\\]""",
),
(
{"A": ["á", "à", "ä"], "E": ["é", "è", "ë"]},
{"A": ["a", "a", "a"], "E": ["e", "e", "e"]},
"""{obj}\\.iloc\\[:, 0\\] \\(column name="A"\\) are different
{obj}\\.iloc\\[:, 0\\] \\(column name="A"\\) values are different \\(100\\.0 %\\)
\\[index\\]: \\[0, 1, 2\\]
\\[left\\]: \\[á, à, ä\\]
\\[right\\]: \\[a, a, a\\]""",
),
],
)
def test_frame_equal_unicode(df1, df2, msg, by_blocks_fixture, frame_or_series):
# see gh-20503
#
# Test ensures that `tm.assert_frame_equals` raises the right exception
# when comparing DataFrames containing differing unicode objects.
df1 = DataFrame(df1)
df2 = DataFrame(df2)
msg = msg.format(obj=frame_or_series.__name__)
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(
df1, df2, by_blocks=by_blocks_fixture, obj=frame_or_series.__name__
)
def test_assert_frame_equal_extension_dtype_mismatch():
# https://github.com/pandas-dev/pandas/issues/32747
left = DataFrame({"a": [1, 2, 3]}, dtype="Int64")
right = left.astype(int)
msg = (
"Attributes of DataFrame\\.iloc\\[:, 0\\] "
'\\(column name="a"\\) are different\n\n'
'Attribute "dtype" are different\n'
"\\[left\\]: Int64\n"
"\\[right\\]: int[32|64]"
)
tm.assert_frame_equal(left, right, check_dtype=False)
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(left, right, check_dtype=True)
def test_assert_frame_equal_interval_dtype_mismatch():
# https://github.com/pandas-dev/pandas/issues/32747
left = DataFrame({"a": [pd.Interval(0, 1)]}, dtype="interval")
right = left.astype(object)
msg = (
"Attributes of DataFrame\\.iloc\\[:, 0\\] "
'\\(column name="a"\\) are different\n\n'
'Attribute "dtype" are different\n'
"\\[left\\]: interval\\[int64, right\\]\n"
"\\[right\\]: object"
)
tm.assert_frame_equal(left, right, check_dtype=False)
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(left, right, check_dtype=True)
def test_assert_frame_equal_ignore_extension_dtype_mismatch():
# https://github.com/pandas-dev/pandas/issues/35715
left = DataFrame({"a": [1, 2, 3]}, dtype="Int64")
right = DataFrame({"a": [1, 2, 3]}, dtype="Int32")
tm.assert_frame_equal(left, right, check_dtype=False)
def test_assert_frame_equal_ignore_extension_dtype_mismatch_cross_class():
# https://github.com/pandas-dev/pandas/issues/35715
left = DataFrame({"a": [1, 2, 3]}, dtype="Int64")
right = DataFrame({"a": [1, 2, 3]}, dtype="int64")
tm.assert_frame_equal(left, right, check_dtype=False)
@pytest.mark.parametrize(
"dtype", ["timedelta64[ns]", "datetime64[ns, UTC]", "Period[D]"]
)
def test_assert_frame_equal_datetime_like_dtype_mismatch(dtype):
df1 = DataFrame({"a": []}, dtype=dtype)
df2 = DataFrame({"a": []})
tm.assert_frame_equal(df1, df2, check_dtype=False)
def test_allows_duplicate_labels():
left = DataFrame()
right = DataFrame().set_flags(allows_duplicate_labels=False)
tm.assert_frame_equal(left, left)
tm.assert_frame_equal(right, right)
tm.assert_frame_equal(left, right, check_flags=False)
tm.assert_frame_equal(right, left, check_flags=False)
with pytest.raises(AssertionError, match="<Flags"):
tm.assert_frame_equal(left, right)
with pytest.raises(AssertionError, match="<Flags"):
tm.assert_frame_equal(left, right)
def test_assert_frame_equal_columns_mixed_dtype():
# GH#39168
df = DataFrame([[0, 1, 2]], columns=["foo", "bar", 42], index=[1, "test", 2])
tm.assert_frame_equal(df, df, check_like=True)
def test_frame_equal_extension_dtype(frame_or_series, any_numeric_ea_dtype):
# GH#39410
obj = frame_or_series([1, 2], dtype=any_numeric_ea_dtype)
tm.assert_equal(obj, obj, check_exact=True)
@pytest.mark.parametrize("indexer", [(0, 1), (1, 0)])
def test_frame_equal_mixed_dtypes(frame_or_series, any_numeric_ea_dtype, indexer):
dtypes = (any_numeric_ea_dtype, "int64")
obj1 = frame_or_series([1, 2], dtype=dtypes[indexer[0]])
obj2 = frame_or_series([1, 2], dtype=dtypes[indexer[1]])
tm.assert_equal(obj1, obj2, check_exact=True, check_dtype=False)
def test_assert_frame_equal_check_like_different_indexes():
# GH#39739
df1 = DataFrame(index=pd.Index([], dtype="object"))
df2 = DataFrame(index=pd.RangeIndex(start=0, stop=0, step=1))
with pytest.raises(AssertionError, match="DataFrame.index are different"):
tm.assert_frame_equal(df1, df2, check_like=True)
def test_assert_frame_equal_checking_allow_dups_flag():
# GH#45554
left = DataFrame([[1, 2], [3, 4]])
left.flags.allows_duplicate_labels = False
right = DataFrame([[1, 2], [3, 4]])
right.flags.allows_duplicate_labels = True
tm.assert_frame_equal(left, right, check_flags=False)
with pytest.raises(AssertionError, match="allows_duplicate_labels"):
tm.assert_frame_equal(left, right, check_flags=True)
def test_assert_frame_equal_check_like_categorical_midx():
# GH#48975
left = DataFrame(
[[1], [2], [3]],
index=pd.MultiIndex.from_arrays(
[
pd.Categorical(["a", "b", "c"]),
pd.Categorical(["a", "b", "c"]),
]
),
)
right = DataFrame(
[[3], [2], [1]],
index=pd.MultiIndex.from_arrays(
[
pd.Categorical(["c", "b", "a"]),
pd.Categorical(["c", "b", "a"]),
]
),
)
tm.assert_frame_equal(left, right, check_like=True)
def test_assert_frame_equal_ea_column_definition_in_exception_mask():
# GH#50323
df1 = DataFrame({"a": pd.Series([pd.NA, 1], dtype="Int64")})
df2 = DataFrame({"a": pd.Series([1, 1], dtype="Int64")})
msg = r'DataFrame.iloc\[:, 0\] \(column name="a"\) NA mask values are different'
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(df1, df2)
def test_assert_frame_equal_ea_column_definition_in_exception():
# GH#50323
df1 = DataFrame({"a": pd.Series([pd.NA, 1], dtype="Int64")})
df2 = DataFrame({"a": pd.Series([pd.NA, 2], dtype="Int64")})
msg = r'DataFrame.iloc\[:, 0\] \(column name="a"\) values are different'
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(df1, df2)
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(df1, df2, check_exact=True)
def test_assert_frame_equal_ts_column():
# GH#50323
df1 = DataFrame({"a": [pd.Timestamp("2019-12-31"), pd.Timestamp("2020-12-31")]})
df2 = DataFrame({"a": [pd.Timestamp("2020-12-31"), pd.Timestamp("2020-12-31")]})
msg = r'DataFrame.iloc\[:, 0\] \(column name="a"\) values are different'
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(df1, df2)
def test_assert_frame_equal_set():
# GH#51727
df1 = DataFrame({"set_column": [{1, 2, 3}, {4, 5, 6}]})
df2 = DataFrame({"set_column": [{1, 2, 3}, {4, 5, 6}]})
tm.assert_frame_equal(df1, df2)
def test_assert_frame_equal_set_mismatch():
# GH#51727
df1 = DataFrame({"set_column": [{1, 2, 3}, {4, 5, 6}]})
df2 = DataFrame({"set_column": [{1, 2, 3}, {4, 5, 7}]})
msg = r'DataFrame.iloc\[:, 0\] \(column name="set_column"\) values are different'
with pytest.raises(AssertionError, match=msg):
tm.assert_frame_equal(df1, df2)