|
| 1 | +""" |
| 2 | +Categorical Cross-Entropy Loss |
| 3 | +
|
| 4 | +This function calculates the Categorical Cross-Entropy Loss between true class |
| 5 | +labels and predicted class probabilities. |
| 6 | +
|
| 7 | +Formula: |
| 8 | +Categorical Cross-Entropy Loss = -Σ(y_true * ln(y_pred)) |
| 9 | +
|
| 10 | +Resources: |
| 11 | +- [Wikipedia - Cross entropy](https://en.wikipedia.org/wiki/Cross_entropy) |
| 12 | +""" |
| 13 | + |
| 14 | +import numpy as np |
| 15 | + |
| 16 | + |
| 17 | +def categorical_cross_entropy( |
| 18 | + y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15 |
| 19 | +) -> float: |
| 20 | + """ |
| 21 | + Calculate Categorical Cross-Entropy Loss between true class labels and |
| 22 | + predicted class probabilities. |
| 23 | +
|
| 24 | + Parameters: |
| 25 | + - y_true: True class labels (one-hot encoded) as a NumPy array. |
| 26 | + - y_pred: Predicted class probabilities as a NumPy array. |
| 27 | + - epsilon: Small constant to avoid numerical instability. |
| 28 | +
|
| 29 | + Returns: |
| 30 | + - ce_loss: Categorical Cross-Entropy Loss as a floating-point number. |
| 31 | +
|
| 32 | + Example: |
| 33 | + >>> true_labels = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) |
| 34 | + >>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1], [0.0, 0.1, 0.9]]) |
| 35 | + >>> categorical_cross_entropy(true_labels, pred_probs) |
| 36 | + 0.567395975254385 |
| 37 | +
|
| 38 | + >>> y_true = np.array([[1, 0], [0, 1]]) |
| 39 | + >>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]]) |
| 40 | + >>> categorical_cross_entropy(y_true, y_pred) |
| 41 | + Traceback (most recent call last): |
| 42 | + ... |
| 43 | + ValueError: Input arrays must have the same shape. |
| 44 | +
|
| 45 | + >>> y_true = np.array([[2, 0, 1], [1, 0, 0]]) |
| 46 | + >>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]]) |
| 47 | + >>> categorical_cross_entropy(y_true, y_pred) |
| 48 | + Traceback (most recent call last): |
| 49 | + ... |
| 50 | + ValueError: y_true must be one-hot encoded. |
| 51 | +
|
| 52 | + >>> y_true = np.array([[1, 0, 1], [1, 0, 0]]) |
| 53 | + >>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]]) |
| 54 | + >>> categorical_cross_entropy(y_true, y_pred) |
| 55 | + Traceback (most recent call last): |
| 56 | + ... |
| 57 | + ValueError: y_true must be one-hot encoded. |
| 58 | +
|
| 59 | + >>> y_true = np.array([[1, 0, 0], [0, 1, 0]]) |
| 60 | + >>> y_pred = np.array([[0.9, 0.1, 0.1], [0.2, 0.7, 0.1]]) |
| 61 | + >>> categorical_cross_entropy(y_true, y_pred) |
| 62 | + Traceback (most recent call last): |
| 63 | + ... |
| 64 | + ValueError: Predicted probabilities must sum to approximately 1. |
| 65 | + """ |
| 66 | + if y_true.shape != y_pred.shape: |
| 67 | + raise ValueError("Input arrays must have the same shape.") |
| 68 | + |
| 69 | + if np.any((y_true != 0) & (y_true != 1)) or np.any(y_true.sum(axis=1) != 1): |
| 70 | + raise ValueError("y_true must be one-hot encoded.") |
| 71 | + |
| 72 | + if not np.all(np.isclose(np.sum(y_pred, axis=1), 1, rtol=epsilon, atol=epsilon)): |
| 73 | + raise ValueError("Predicted probabilities must sum to approximately 1.") |
| 74 | + |
| 75 | + # Clip predicted probabilities to avoid log(0) |
| 76 | + y_pred = np.clip(y_pred, epsilon, 1) |
| 77 | + |
| 78 | + # Calculate categorical cross-entropy loss |
| 79 | + return -np.sum(y_true * np.log(y_pred)) |
| 80 | + |
| 81 | + |
| 82 | +if __name__ == "__main__": |
| 83 | + import doctest |
| 84 | + |
| 85 | + doctest.testmod() |
0 commit comments