Skip to content

Commit 5645084

Browse files
tianyizheng02github-actions
and
github-actions
authored
Consolidate loss functions into a single file (TheAlgorithms#10737)
* Consolidate loss functions into single file * updating DIRECTORY.md * Fix typo --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
1 parent 52a987e commit 5645084

8 files changed

+253
-373
lines changed

Diff for: DIRECTORY.md

+1-7
Original file line numberDiff line numberDiff line change
@@ -549,13 +549,7 @@
549549
* Local Weighted Learning
550550
* [Local Weighted Learning](machine_learning/local_weighted_learning/local_weighted_learning.py)
551551
* [Logistic Regression](machine_learning/logistic_regression.py)
552-
* Loss Functions
553-
* [Binary Cross Entropy](machine_learning/loss_functions/binary_cross_entropy.py)
554-
* [Categorical Cross Entropy](machine_learning/loss_functions/categorical_cross_entropy.py)
555-
* [Hinge Loss](machine_learning/loss_functions/hinge_loss.py)
556-
* [Huber Loss](machine_learning/loss_functions/huber_loss.py)
557-
* [Mean Squared Error](machine_learning/loss_functions/mean_squared_error.py)
558-
* [Mean Squared Logarithmic Error](machine_learning/loss_functions/mean_squared_logarithmic_error.py)
552+
* [Loss Functions](machine_learning/loss_functions.py)
559553
* [Mfcc](machine_learning/mfcc.py)
560554
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
561555
* [Polynomial Regression](machine_learning/polynomial_regression.py)

Diff for: machine_learning/loss_functions.py

+252
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,252 @@
1+
import numpy as np
2+
3+
4+
def binary_cross_entropy(
5+
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
6+
) -> float:
7+
"""
8+
Calculate the mean binary cross-entropy (BCE) loss between true labels and predicted
9+
probabilities.
10+
11+
BCE loss quantifies dissimilarity between true labels (0 or 1) and predicted
12+
probabilities. It's widely used in binary classification tasks.
13+
14+
BCE = -Σ(y_true * ln(y_pred) + (1 - y_true) * ln(1 - y_pred))
15+
16+
Reference: https://en.wikipedia.org/wiki/Cross_entropy
17+
18+
Parameters:
19+
- y_true: True binary labels (0 or 1)
20+
- y_pred: Predicted probabilities for class 1
21+
- epsilon: Small constant to avoid numerical instability
22+
23+
>>> true_labels = np.array([0, 1, 1, 0, 1])
24+
>>> predicted_probs = np.array([0.2, 0.7, 0.9, 0.3, 0.8])
25+
>>> binary_cross_entropy(true_labels, predicted_probs)
26+
0.2529995012327421
27+
>>> true_labels = np.array([0, 1, 1, 0, 1])
28+
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
29+
>>> binary_cross_entropy(true_labels, predicted_probs)
30+
Traceback (most recent call last):
31+
...
32+
ValueError: Input arrays must have the same length.
33+
"""
34+
if len(y_true) != len(y_pred):
35+
raise ValueError("Input arrays must have the same length.")
36+
37+
y_pred = np.clip(y_pred, epsilon, 1 - epsilon) # Clip predictions to avoid log(0)
38+
bce_loss = -(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))
39+
return np.mean(bce_loss)
40+
41+
42+
def categorical_cross_entropy(
43+
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
44+
) -> float:
45+
"""
46+
Calculate categorical cross-entropy (CCE) loss between true class labels and
47+
predicted class probabilities.
48+
49+
CCE = -Σ(y_true * ln(y_pred))
50+
51+
Reference: https://en.wikipedia.org/wiki/Cross_entropy
52+
53+
Parameters:
54+
- y_true: True class labels (one-hot encoded)
55+
- y_pred: Predicted class probabilities
56+
- epsilon: Small constant to avoid numerical instability
57+
58+
>>> true_labels = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
59+
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1], [0.0, 0.1, 0.9]])
60+
>>> categorical_cross_entropy(true_labels, pred_probs)
61+
0.567395975254385
62+
>>> true_labels = np.array([[1, 0], [0, 1]])
63+
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
64+
>>> categorical_cross_entropy(true_labels, pred_probs)
65+
Traceback (most recent call last):
66+
...
67+
ValueError: Input arrays must have the same shape.
68+
>>> true_labels = np.array([[2, 0, 1], [1, 0, 0]])
69+
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
70+
>>> categorical_cross_entropy(true_labels, pred_probs)
71+
Traceback (most recent call last):
72+
...
73+
ValueError: y_true must be one-hot encoded.
74+
>>> true_labels = np.array([[1, 0, 1], [1, 0, 0]])
75+
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
76+
>>> categorical_cross_entropy(true_labels, pred_probs)
77+
Traceback (most recent call last):
78+
...
79+
ValueError: y_true must be one-hot encoded.
80+
>>> true_labels = np.array([[1, 0, 0], [0, 1, 0]])
81+
>>> pred_probs = np.array([[0.9, 0.1, 0.1], [0.2, 0.7, 0.1]])
82+
>>> categorical_cross_entropy(true_labels, pred_probs)
83+
Traceback (most recent call last):
84+
...
85+
ValueError: Predicted probabilities must sum to approximately 1.
86+
"""
87+
if y_true.shape != y_pred.shape:
88+
raise ValueError("Input arrays must have the same shape.")
89+
90+
if np.any((y_true != 0) & (y_true != 1)) or np.any(y_true.sum(axis=1) != 1):
91+
raise ValueError("y_true must be one-hot encoded.")
92+
93+
if not np.all(np.isclose(np.sum(y_pred, axis=1), 1, rtol=epsilon, atol=epsilon)):
94+
raise ValueError("Predicted probabilities must sum to approximately 1.")
95+
96+
y_pred = np.clip(y_pred, epsilon, 1) # Clip predictions to avoid log(0)
97+
return -np.sum(y_true * np.log(y_pred))
98+
99+
100+
def hinge_loss(y_true: np.ndarray, y_pred: np.ndarray) -> float:
101+
"""
102+
Calculate the mean hinge loss for between true labels and predicted probabilities
103+
for training support vector machines (SVMs).
104+
105+
Hinge loss = max(0, 1 - true * pred)
106+
107+
Reference: https://en.wikipedia.org/wiki/Hinge_loss
108+
109+
Args:
110+
- y_true: actual values (ground truth) encoded as -1 or 1
111+
- y_pred: predicted values
112+
113+
>>> true_labels = np.array([-1, 1, 1, -1, 1])
114+
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
115+
>>> hinge_loss(true_labels, pred)
116+
1.52
117+
>>> true_labels = np.array([-1, 1, 1, -1, 1, 1])
118+
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
119+
>>> hinge_loss(true_labels, pred)
120+
Traceback (most recent call last):
121+
...
122+
ValueError: Length of predicted and actual array must be same.
123+
>>> true_labels = np.array([-1, 1, 10, -1, 1])
124+
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
125+
>>> hinge_loss(true_labels, pred)
126+
Traceback (most recent call last):
127+
...
128+
ValueError: y_true can have values -1 or 1 only.
129+
"""
130+
if len(y_true) != len(y_pred):
131+
raise ValueError("Length of predicted and actual array must be same.")
132+
133+
if np.any((y_true != -1) & (y_true != 1)):
134+
raise ValueError("y_true can have values -1 or 1 only.")
135+
136+
hinge_losses = np.maximum(0, 1.0 - (y_true * y_pred))
137+
return np.mean(hinge_losses)
138+
139+
140+
def huber_loss(y_true: np.ndarray, y_pred: np.ndarray, delta: float) -> float:
141+
"""
142+
Calculate the mean Huber loss between the given ground truth and predicted values.
143+
144+
The Huber loss describes the penalty incurred by an estimation procedure, and it
145+
serves as a measure of accuracy for regression models.
146+
147+
Huber loss =
148+
0.5 * (y_true - y_pred)^2 if |y_true - y_pred| <= delta
149+
delta * |y_true - y_pred| - 0.5 * delta^2 otherwise
150+
151+
Reference: https://en.wikipedia.org/wiki/Huber_loss
152+
153+
Parameters:
154+
- y_true: The true values (ground truth)
155+
- y_pred: The predicted values
156+
157+
>>> true_values = np.array([0.9, 10.0, 2.0, 1.0, 5.2])
158+
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
159+
>>> np.isclose(huber_loss(true_values, predicted_values, 1.0), 2.102)
160+
True
161+
>>> true_labels = np.array([11.0, 21.0, 3.32, 4.0, 5.0])
162+
>>> predicted_probs = np.array([8.3, 20.8, 2.9, 11.2, 5.0])
163+
>>> np.isclose(huber_loss(true_labels, predicted_probs, 1.0), 1.80164)
164+
True
165+
>>> true_labels = np.array([11.0, 21.0, 3.32, 4.0])
166+
>>> predicted_probs = np.array([8.3, 20.8, 2.9, 11.2, 5.0])
167+
>>> huber_loss(true_labels, predicted_probs, 1.0)
168+
Traceback (most recent call last):
169+
...
170+
ValueError: Input arrays must have the same length.
171+
"""
172+
if len(y_true) != len(y_pred):
173+
raise ValueError("Input arrays must have the same length.")
174+
175+
huber_mse = 0.5 * (y_true - y_pred) ** 2
176+
huber_mae = delta * (np.abs(y_true - y_pred) - 0.5 * delta)
177+
return np.where(np.abs(y_true - y_pred) <= delta, huber_mse, huber_mae).mean()
178+
179+
180+
def mean_squared_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
181+
"""
182+
Calculate the mean squared error (MSE) between ground truth and predicted values.
183+
184+
MSE measures the squared difference between true values and predicted values, and it
185+
serves as a measure of accuracy for regression models.
186+
187+
MSE = (1/n) * Σ(y_true - y_pred)^2
188+
189+
Reference: https://en.wikipedia.org/wiki/Mean_squared_error
190+
191+
Parameters:
192+
- y_true: The true values (ground truth)
193+
- y_pred: The predicted values
194+
195+
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
196+
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
197+
>>> np.isclose(mean_squared_error(true_values, predicted_values), 0.028)
198+
True
199+
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
200+
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
201+
>>> mean_squared_error(true_labels, predicted_probs)
202+
Traceback (most recent call last):
203+
...
204+
ValueError: Input arrays must have the same length.
205+
"""
206+
if len(y_true) != len(y_pred):
207+
raise ValueError("Input arrays must have the same length.")
208+
209+
squared_errors = (y_true - y_pred) ** 2
210+
return np.mean(squared_errors)
211+
212+
213+
def mean_squared_logarithmic_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
214+
"""
215+
Calculate the mean squared logarithmic error (MSLE) between ground truth and
216+
predicted values.
217+
218+
MSLE measures the squared logarithmic difference between true values and predicted
219+
values for regression models. It's particularly useful for dealing with skewed or
220+
large-value data, and it's often used when the relative differences between
221+
predicted and true values are more important than absolute differences.
222+
223+
MSLE = (1/n) * Σ(log(1 + y_true) - log(1 + y_pred))^2
224+
225+
Reference: https://insideaiml.com/blog/MeanSquared-Logarithmic-Error-Loss-1035
226+
227+
Parameters:
228+
- y_true: The true values (ground truth)
229+
- y_pred: The predicted values
230+
231+
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
232+
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
233+
>>> mean_squared_logarithmic_error(true_values, predicted_values)
234+
0.0030860877925181344
235+
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
236+
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
237+
>>> mean_squared_logarithmic_error(true_labels, predicted_probs)
238+
Traceback (most recent call last):
239+
...
240+
ValueError: Input arrays must have the same length.
241+
"""
242+
if len(y_true) != len(y_pred):
243+
raise ValueError("Input arrays must have the same length.")
244+
245+
squared_logarithmic_errors = (np.log1p(y_true) - np.log1p(y_pred)) ** 2
246+
return np.mean(squared_logarithmic_errors)
247+
248+
249+
if __name__ == "__main__":
250+
import doctest
251+
252+
doctest.testmod()

Diff for: machine_learning/loss_functions/binary_cross_entropy.py

-59
This file was deleted.

0 commit comments

Comments
 (0)