3
3
import pandas as pd
4
4
import category_encoders as encoders
5
5
import numpy as np
6
- from math import isclose
7
6
8
7
__author__ = 'willmcginnis'
9
8
@@ -644,9 +643,9 @@ def test_fit_HaveConstructorSetSmoothingAndMinSamplesLeaf_ExpectUsedInFit(self):
644
643
encoder .fit (binary_cat_example , binary_cat_example ['target' ])
645
644
trend_mapping = encoder .mapping [0 ]['mapping' ]
646
645
647
- assert isclose (0.4125 , trend_mapping ['DOWN' ]['smoothing' ], abs_tol = 1e-4 )
648
- assert isclose ( .5 , trend_mapping ['FLAT' ]['smoothing' ], abs_tol = 1e-4 )
649
- assert isclose (0.5874 , trend_mapping ['UP' ]['smoothing' ], abs_tol = 1e-4 )
646
+ self . assertAlmostEquals (0.4125 , trend_mapping ['DOWN' ]['smoothing' ], delta = 1e-4 )
647
+ self . assertEqual ( 0 .5 , trend_mapping ['FLAT' ]['smoothing' ])
648
+ self . assertAlmostEquals (0.5874 , trend_mapping ['UP' ]['smoothing' ], delta = 1e-4 )
650
649
651
650
def test_fit_transform_HaveConstructorSetSmoothingAndMinSamplesLeaf_ExpectCorrectValueInResult (self ):
652
651
"""
@@ -663,7 +662,7 @@ def test_fit_transform_HaveConstructorSetSmoothingAndMinSamplesLeaf_ExpectCorrec
663
662
result = encoder .fit_transform (binary_cat_example , binary_cat_example ['target' ])
664
663
values = result ['Trend' ].values
665
664
666
- assert isclose (0.5874 , values [0 ], abs_tol = 1e-4 )
667
- assert isclose (0.5874 , values [1 ], abs_tol = 1e-4 )
668
- assert isclose (0.4125 , values [2 ], abs_tol = 1e-4 )
669
- assert isclose (0.5 , values [3 ], abs_tol = 1e-4 )
665
+ self . assertAlmostEquals (0.5874 , values [0 ], delta = 1e-4 )
666
+ self . assertAlmostEquals (0.5874 , values [1 ], delta = 1e-4 )
667
+ self . assertAlmostEquals (0.4125 , values [2 ], delta = 1e-4 )
668
+ self . assertEqual (0.5 , values [3 ])
0 commit comments