forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution_69.py
59 lines (45 loc) · 1.56 KB
/
solution_69.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python3
"""
Totient maximum
Problem 69
Euler's Totient function, φ(n) [sometimes called the phi function],
is used to determine the number of numbers less than n which are relatively prime to n.
For example, as 1, 2, 4, 5, 7, and 8,
are all less than nine and relatively prime to nine, φ(9)=6.
n Relatively Prime φ(n) n/φ(n)
2 1 1 2
3 1,2 2 1.5
4 1,3 2 2
5 1,2,3,4 4 1.25
6 1,5 2 3
7 1,2,3,4,5,6 6 1.1666...
8 1,3,5,7 4 2
9 1,2,4,5,7,8 6 1.5
10 1,3,7,9 4 2.5
It can be seen that n=6 produces a maximum n/φ(n) for n ≤ 10.
Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.
"""
def solution() -> int:
"""
Returns solution to problem.
Algorithm:
Find n/φ(n)for all n ≤ 1,000,000 and return the n that attains maximum
>>> solution()
999983
"""
n = 10 ** 6
# Precompute phi using product formula (wikilink below)
# https://en.wikipedia.org/wiki/Euler%27s_totient_function#Euler's_product_formula
phi = list(range(0, n + 1))
for number in range(2, n + 1):
if phi[number] == number:
phi[number] -= 1
for multiple in range(number * 2, n + 1, number):
phi[multiple] = (phi[multiple] // number) * (number - 1)
answer = 6
for number in range(10, n + 1):
if phi[answer] / answer < phi[number] / number:
answer = number
return answer
if __name__ == "__main__":
print(solution())