@@ -88,10 +88,10 @@ of multi-axis indexing.
88
88
See more at :ref: `Selection by Position <indexing.integer >`
89
89
90
90
- ``.ix `` supports mixed integer and label based access. It is primarily label
91
- based, but will fallback to integer positional access. ``.ix `` is the most
91
+ based, but will fall back to integer positional access. ``.ix `` is the most
92
92
general and will support any of the inputs to ``.loc `` and ``.iloc ``, as well
93
93
as support for floating point label schemes. ``.ix `` is especially useful
94
- when dealing with mixed positional and label based hierarchial indexes.
94
+ when dealing with mixed positional and label based hierarchical indexes.
95
95
As using integer slices with ``.ix `` have different behavior depending on
96
96
whether the slice is interpreted as position based or label based, it's
97
97
usually better to be explicit and use ``.iloc `` or ``.loc ``.
@@ -230,7 +230,7 @@ new column.
230
230
- The ``Series/Panel `` accesses are available starting in 0.13.0.
231
231
232
232
If you are using the IPython environment, you may also use tab-completion to
233
- see these accessable attributes.
233
+ see these accessible attributes.
234
234
235
235
Slicing ranges
236
236
--------------
@@ -328,7 +328,7 @@ For getting values with a boolean array
328
328
df1.loc[' a' ]> 0
329
329
df1.loc[:,df1.loc[' a' ]> 0 ]
330
330
331
- For getting a value explicity (equiv to deprecated ``df.get_value('a','A') ``)
331
+ For getting a value explicitly (equiv to deprecated ``df.get_value('a','A') ``)
332
332
333
333
.. ipython :: python
334
334
@@ -415,7 +415,7 @@ For getting a cross section using an integer position (equiv to ``df.xs(1)``)
415
415
416
416
df1.iloc[1 ]
417
417
418
- There is one signficant departure from standard python/numpy slicing semantics.
418
+ There is one significant departure from standard python/numpy slicing semantics.
419
419
python/numpy allow slicing past the end of an array without an associated error.
420
420
421
421
.. ipython :: python
@@ -494,7 +494,7 @@ out what you're asking for. If you only want to access a scalar value, the
494
494
fastest way is to use the ``at `` and ``iat `` methods, which are implemented on
495
495
all of the data structures.
496
496
497
- Similary to ``loc ``, ``at `` provides **label ** based scalar lookups, while, ``iat `` provides **integer ** based lookups analagously to ``iloc ``
497
+ Similarly to ``loc ``, ``at `` provides **label ** based scalar lookups, while, ``iat `` provides **integer ** based lookups analogously to ``iloc ``
498
498
499
499
.. ipython :: python
500
500
@@ -643,7 +643,7 @@ To return a Series of the same shape as the original
643
643
644
644
s.where(s > 0 )
645
645
646
- Selecting values from a DataFrame with a boolean critierion now also preserves
646
+ Selecting values from a DataFrame with a boolean criterion now also preserves
647
647
input data shape. ``where `` is used under the hood as the implementation.
648
648
Equivalent is ``df.where(df < 0) ``
649
649
@@ -690,7 +690,7 @@ without creating a copy:
690
690
**alignment **
691
691
692
692
Furthermore, ``where `` aligns the input boolean condition (ndarray or DataFrame),
693
- such that partial selection with setting is possible. This is analagous to
693
+ such that partial selection with setting is possible. This is analogous to
694
694
partial setting via ``.ix `` (but on the contents rather than the axis labels)
695
695
696
696
.. ipython :: python
@@ -756,7 +756,7 @@ between the values of columns ``a`` and ``c``. For example:
756
756
# query
757
757
df.query(' (a < b) & (b < c)' )
758
758
759
- Do the same thing but fallback on a named index if there is no column
759
+ Do the same thing but fall back on a named index if there is no column
760
760
with the name ``a ``.
761
761
762
762
.. ipython :: python
@@ -899,7 +899,7 @@ The ``in`` and ``not in`` operators
899
899
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
900
900
901
901
:meth: `~pandas.DataFrame.query ` also supports special use of Python's ``in `` and
902
- ``not in `` comparison operators, providing a succint syntax for calling the
902
+ ``not in `` comparison operators, providing a succinct syntax for calling the
903
903
``isin `` method of a ``Series `` or ``DataFrame ``.
904
904
905
905
.. ipython :: python
@@ -1416,7 +1416,7 @@ faster, and allows one to index *both* axes if so desired.
1416
1416
Why does the assignment when using chained indexing fail!
1417
1417
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1418
1418
1419
- So, why does this show the `` SettingWithCopy`` warning / and possibly not work when you do chained indexing and assignement :
1419
+ So, why does this show the `` SettingWithCopy`` warning / and possibly not work when you do chained indexing and assignment :
1420
1420
1421
1421
.. code- block:: python
1422
1422
@@ -2149,7 +2149,7 @@ metadata, like the index ``name`` (or, for ``MultiIndex``, ``levels`` and
2149
2149
2150
2150
You can use the ``rename ``, ``set_names ``, ``set_levels ``, and ``set_labels ``
2151
2151
to set these attributes directly. They default to returning a copy; however,
2152
- you can specify ``inplace=True `` to have the data change inplace .
2152
+ you can specify ``inplace=True `` to have the data change in place .
2153
2153
2154
2154
.. ipython :: python
2155
2155
0 commit comments