forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathjoin_merge.py
396 lines (301 loc) · 15.7 KB
/
join_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
from .pandas_vb_common import *
class append_frame_single_homogenous(object):
goal_time = 0.2
def setup(self):
self.df1 = pd.DataFrame(np.random.randn(10000, 4), columns=['A', 'B', 'C', 'D'])
self.df2 = self.df1.copy()
self.df2.index = np.arange(10000, 20000)
self.mdf1 = self.df1.copy()
self.mdf1['obj1'] = 'bar'
self.mdf1['obj2'] = 'bar'
self.mdf1['int1'] = 5
try:
self.mdf1.consolidate(inplace=True)
except:
pass
self.mdf2 = self.mdf1.copy()
self.mdf2.index = self.df2.index
def time_append_frame_single_homogenous(self):
self.df1.append(self.df2)
class append_frame_single_mixed(object):
goal_time = 0.2
def setup(self):
self.df1 = pd.DataFrame(np.random.randn(10000, 4), columns=['A', 'B', 'C', 'D'])
self.df2 = self.df1.copy()
self.df2.index = np.arange(10000, 20000)
self.mdf1 = self.df1.copy()
self.mdf1['obj1'] = 'bar'
self.mdf1['obj2'] = 'bar'
self.mdf1['int1'] = 5
try:
self.mdf1.consolidate(inplace=True)
except:
pass
self.mdf2 = self.mdf1.copy()
self.mdf2.index = self.df2.index
def time_append_frame_single_mixed(self):
self.mdf1.append(self.mdf2)
class concat_empty_frames1(object):
goal_time = 0.2
def setup(self):
self.df = pd.DataFrame(dict(A=range(10000)), index=date_range('20130101', periods=10000, freq='s'))
self.empty = pd.DataFrame()
def time_concat_empty_frames1(self):
concat([self.df, self.empty])
class concat_empty_frames2(object):
goal_time = 0.2
def setup(self):
self.df = pd.DataFrame(dict(A=range(10000)), index=date_range('20130101', periods=10000, freq='s'))
self.empty = pd.DataFrame()
def time_concat_empty_frames2(self):
concat([self.empty, self.df])
class concat_series_axis1(object):
goal_time = 0.2
def setup(self):
self.n = 1000
self.indices = tm.makeStringIndex(1000)
self.s = Series(self.n, index=self.indices)
self.pieces = [self.s[i:(- i)] for i in range(1, 10)]
self.pieces = (self.pieces * 50)
def time_concat_series_axis1(self):
concat(self.pieces, axis=1)
class concat_small_frames(object):
goal_time = 0.2
def setup(self):
self.df = pd.DataFrame(randn(5, 4))
def time_concat_small_frames(self):
concat(([self.df] * 1000))
class concat_panels(object):
goal_time = 0.2
def setup(self):
dataset = np.zeros((10000, 200, 2), dtype=np.float32)
self.panels_f = [pd.Panel(np.copy(dataset, order='F'))
for i in range(20)]
self.panels_c = [pd.Panel(np.copy(dataset, order='C'))
for i in range(20)]
def time_concat_c_ordered_axis0(self):
concat(self.panels_c, axis=0, ignore_index=True)
def time_concat_f_ordered_axis0(self):
concat(self.panels_f, axis=0, ignore_index=True)
def time_concat_c_ordered_axis1(self):
concat(self.panels_c, axis=1, ignore_index=True)
def time_concat_f_ordered_axis1(self):
concat(self.panels_f, axis=1, ignore_index=True)
def time_concat_c_ordered_axis2(self):
concat(self.panels_c, axis=2, ignore_index=True)
def time_concat_f_ordered_axis2(self):
concat(self.panels_f, axis=2, ignore_index=True)
class concat_dataframes(object):
goal_time = 0.2
def setup(self):
dataset = np.zeros((10000, 200), dtype=np.float32)
self.frames_f = [pd.DataFrame(np.copy(dataset, order='F'))
for i in range(20)]
self.frames_c = [pd.DataFrame(np.copy(dataset, order='C'))
for i in range(20)]
def time_concat_c_ordered_axis0(self):
concat(self.frames_c, axis=0, ignore_index=True)
def time_concat_f_ordered_axis0(self):
concat(self.frames_f, axis=0, ignore_index=True)
def time_concat_c_ordered_axis1(self):
concat(self.frames_c, axis=1, ignore_index=True)
def time_concat_f_ordered_axis1(self):
concat(self.frames_f, axis=1, ignore_index=True)
class i8merge(object):
goal_time = 0.2
def setup(self):
(low, high, n) = (((-1) << 10), (1 << 10), (1 << 20))
self.left = pd.DataFrame(np.random.randint(low, high, (n, 7)), columns=list('ABCDEFG'))
self.left['left'] = self.left.sum(axis=1)
self.i = np.random.permutation(len(self.left))
self.right = self.left.iloc[self.i].copy()
self.right.columns = (self.right.columns[:(-1)].tolist() + ['right'])
self.right.index = np.arange(len(self.right))
self.right['right'] *= (-1)
def time_i8merge(self):
merge(self.left, self.right, how='outer')
class join_dataframe_index_multi(object):
goal_time = 0.2
def setup(self):
self.level1 = tm.makeStringIndex(10).values
self.level2 = tm.makeStringIndex(1000).values
self.label1 = np.arange(10).repeat(1000)
self.label2 = np.tile(np.arange(1000), 10)
self.key1 = np.tile(self.level1.take(self.label1), 10)
self.key2 = np.tile(self.level2.take(self.label2), 10)
self.shuf = np.arange(100000)
random.shuffle(self.shuf)
try:
self.index2 = MultiIndex(levels=[self.level1, self.level2], labels=[self.label1, self.label2])
self.index3 = MultiIndex(levels=[np.arange(10), np.arange(100), np.arange(100)], labels=[np.arange(10).repeat(10000), np.tile(np.arange(100).repeat(100), 10), np.tile(np.tile(np.arange(100), 100), 10)])
self.df_multi = DataFrame(np.random.randn(len(self.index2), 4), index=self.index2, columns=['A', 'B', 'C', 'D'])
except:
pass
self.df = pd.DataFrame({'data1': np.random.randn(100000), 'data2': np.random.randn(100000), 'key1': self.key1, 'key2': self.key2, })
self.df_key1 = pd.DataFrame(np.random.randn(len(self.level1), 4), index=self.level1, columns=['A', 'B', 'C', 'D'])
self.df_key2 = pd.DataFrame(np.random.randn(len(self.level2), 4), index=self.level2, columns=['A', 'B', 'C', 'D'])
self.df_shuf = self.df.reindex(self.df.index[self.shuf])
def time_join_dataframe_index_multi(self):
self.df.join(self.df_multi, on=['key1', 'key2'])
class join_dataframe_index_single_key_bigger(object):
goal_time = 0.2
def setup(self):
self.level1 = tm.makeStringIndex(10).values
self.level2 = tm.makeStringIndex(1000).values
self.label1 = np.arange(10).repeat(1000)
self.label2 = np.tile(np.arange(1000), 10)
self.key1 = np.tile(self.level1.take(self.label1), 10)
self.key2 = np.tile(self.level2.take(self.label2), 10)
self.shuf = np.arange(100000)
random.shuffle(self.shuf)
try:
self.index2 = MultiIndex(levels=[self.level1, self.level2], labels=[self.label1, self.label2])
self.index3 = MultiIndex(levels=[np.arange(10), np.arange(100), np.arange(100)], labels=[np.arange(10).repeat(10000), np.tile(np.arange(100).repeat(100), 10), np.tile(np.tile(np.arange(100), 100), 10)])
self.df_multi = DataFrame(np.random.randn(len(self.index2), 4), index=self.index2, columns=['A', 'B', 'C', 'D'])
except:
pass
self.df = pd.DataFrame({'data1': np.random.randn(100000), 'data2': np.random.randn(100000), 'key1': self.key1, 'key2': self.key2, })
self.df_key1 = pd.DataFrame(np.random.randn(len(self.level1), 4), index=self.level1, columns=['A', 'B', 'C', 'D'])
self.df_key2 = pd.DataFrame(np.random.randn(len(self.level2), 4), index=self.level2, columns=['A', 'B', 'C', 'D'])
self.df_shuf = self.df.reindex(self.df.index[self.shuf])
def time_join_dataframe_index_single_key_bigger(self):
self.df.join(self.df_key2, on='key2')
class join_dataframe_index_single_key_bigger_sort(object):
goal_time = 0.2
def setup(self):
self.level1 = tm.makeStringIndex(10).values
self.level2 = tm.makeStringIndex(1000).values
self.label1 = np.arange(10).repeat(1000)
self.label2 = np.tile(np.arange(1000), 10)
self.key1 = np.tile(self.level1.take(self.label1), 10)
self.key2 = np.tile(self.level2.take(self.label2), 10)
self.shuf = np.arange(100000)
random.shuffle(self.shuf)
try:
self.index2 = MultiIndex(levels=[self.level1, self.level2], labels=[self.label1, self.label2])
self.index3 = MultiIndex(levels=[np.arange(10), np.arange(100), np.arange(100)], labels=[np.arange(10).repeat(10000), np.tile(np.arange(100).repeat(100), 10), np.tile(np.tile(np.arange(100), 100), 10)])
self.df_multi = DataFrame(np.random.randn(len(self.index2), 4), index=self.index2, columns=['A', 'B', 'C', 'D'])
except:
pass
self.df = pd.DataFrame({'data1': np.random.randn(100000), 'data2': np.random.randn(100000), 'key1': self.key1, 'key2': self.key2, })
self.df_key1 = pd.DataFrame(np.random.randn(len(self.level1), 4), index=self.level1, columns=['A', 'B', 'C', 'D'])
self.df_key2 = pd.DataFrame(np.random.randn(len(self.level2), 4), index=self.level2, columns=['A', 'B', 'C', 'D'])
self.df_shuf = self.df.reindex(self.df.index[self.shuf])
def time_join_dataframe_index_single_key_bigger_sort(self):
self.df_shuf.join(self.df_key2, on='key2', sort=True)
class join_dataframe_index_single_key_small(object):
goal_time = 0.2
def setup(self):
self.level1 = tm.makeStringIndex(10).values
self.level2 = tm.makeStringIndex(1000).values
self.label1 = np.arange(10).repeat(1000)
self.label2 = np.tile(np.arange(1000), 10)
self.key1 = np.tile(self.level1.take(self.label1), 10)
self.key2 = np.tile(self.level2.take(self.label2), 10)
self.shuf = np.arange(100000)
random.shuffle(self.shuf)
try:
self.index2 = MultiIndex(levels=[self.level1, self.level2], labels=[self.label1, self.label2])
self.index3 = MultiIndex(levels=[np.arange(10), np.arange(100), np.arange(100)], labels=[np.arange(10).repeat(10000), np.tile(np.arange(100).repeat(100), 10), np.tile(np.tile(np.arange(100), 100), 10)])
self.df_multi = DataFrame(np.random.randn(len(self.index2), 4), index=self.index2, columns=['A', 'B', 'C', 'D'])
except:
pass
self.df = pd.DataFrame({'data1': np.random.randn(100000), 'data2': np.random.randn(100000), 'key1': self.key1, 'key2': self.key2, })
self.df_key1 = pd.DataFrame(np.random.randn(len(self.level1), 4), index=self.level1, columns=['A', 'B', 'C', 'D'])
self.df_key2 = pd.DataFrame(np.random.randn(len(self.level2), 4), index=self.level2, columns=['A', 'B', 'C', 'D'])
self.df_shuf = self.df.reindex(self.df.index[self.shuf])
def time_join_dataframe_index_single_key_small(self):
self.df.join(self.df_key1, on='key1')
class join_dataframe_integer_2key(object):
goal_time = 0.2
def setup(self):
self.df = pd.DataFrame({'key1': np.tile(np.arange(500).repeat(10), 2), 'key2': np.tile(np.arange(250).repeat(10), 4), 'value': np.random.randn(10000), })
self.df2 = pd.DataFrame({'key1': np.arange(500), 'value2': randn(500), })
self.df3 = self.df[:5000]
def time_join_dataframe_integer_2key(self):
merge(self.df, self.df3)
class join_dataframe_integer_key(object):
goal_time = 0.2
def setup(self):
self.df = pd.DataFrame({'key1': np.tile(np.arange(500).repeat(10), 2), 'key2': np.tile(np.arange(250).repeat(10), 4), 'value': np.random.randn(10000), })
self.df2 = pd.DataFrame({'key1': np.arange(500), 'value2': randn(500), })
self.df3 = self.df[:5000]
def time_join_dataframe_integer_key(self):
merge(self.df, self.df2, on='key1')
class join_non_unique_equal(object):
goal_time = 0.2
def setup(self):
self.date_index = date_range('01-Jan-2013', '23-Jan-2013', freq='T')
self.daily_dates = self.date_index.to_period('D').to_timestamp('S', 'S')
self.fracofday = (self.date_index.view(np.ndarray) - self.daily_dates.view(np.ndarray))
self.fracofday = (self.fracofday.astype('timedelta64[ns]').astype(np.float64) / 86400000000000.0)
self.fracofday = TimeSeries(self.fracofday, self.daily_dates)
self.index = date_range(self.date_index.min().to_period('A').to_timestamp('D', 'S'), self.date_index.max().to_period('A').to_timestamp('D', 'E'), freq='D')
self.temp = TimeSeries(1.0, self.index)
def time_join_non_unique_equal(self):
(self.fracofday * self.temp[self.fracofday.index])
class left_outer_join_index(object):
goal_time = 0.2
def setup(self):
np.random.seed(2718281)
self.n = 50000
self.left = pd.DataFrame(np.random.randint(1, (self.n / 500), (self.n, 2)), columns=['jim', 'joe'])
self.right = pd.DataFrame(np.random.randint(1, (self.n / 500), (self.n, 2)), columns=['jolie', 'jolia']).set_index('jolie')
def time_left_outer_join_index(self):
self.left.join(self.right, on='jim')
class merge_2intkey_nosort(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.indices = tm.makeStringIndex(self.N).values
self.indices2 = tm.makeStringIndex(self.N).values
self.key = np.tile(self.indices[:8000], 10)
self.key2 = np.tile(self.indices2[:8000], 10)
self.left = pd.DataFrame({'key': self.key, 'key2': self.key2, 'value': np.random.randn(80000), })
self.right = pd.DataFrame({'key': self.indices[2000:], 'key2': self.indices2[2000:], 'value2': np.random.randn(8000), })
def time_merge_2intkey_nosort(self):
merge(self.left, self.right, sort=False)
class merge_2intkey_sort(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.indices = tm.makeStringIndex(self.N).values
self.indices2 = tm.makeStringIndex(self.N).values
self.key = np.tile(self.indices[:8000], 10)
self.key2 = np.tile(self.indices2[:8000], 10)
self.left = pd.DataFrame({'key': self.key, 'key2': self.key2, 'value': np.random.randn(80000), })
self.right = pd.DataFrame({'key': self.indices[2000:], 'key2': self.indices2[2000:], 'value2': np.random.randn(8000), })
def time_merge_2intkey_sort(self):
merge(self.left, self.right, sort=True)
class series_align_int64_index(object):
goal_time = 0.2
def setup(self):
self.n = 1000000
self.sz = 500000
self.rng = np.arange(0, 10000000000000, 10000000)
self.stamps = (np.datetime64(datetime.now()).view('i8') + self.rng)
self.idx1 = np.sort(self.sample(self.stamps, self.sz))
self.idx2 = np.sort(self.sample(self.stamps, self.sz))
self.ts1 = Series(np.random.randn(self.sz), self.idx1)
self.ts2 = Series(np.random.randn(self.sz), self.idx2)
def time_series_align_int64_index(self):
(self.ts1 + self.ts2)
def sample(self, values, k):
self.sampler = np.random.permutation(len(values))
return values.take(self.sampler[:k])
class series_align_left_monotonic(object):
goal_time = 0.2
def setup(self):
self.n = 1000000
self.sz = 500000
self.rng = np.arange(0, 10000000000000, 10000000)
self.stamps = (np.datetime64(datetime.now()).view('i8') + self.rng)
self.idx1 = np.sort(self.sample(self.stamps, self.sz))
self.idx2 = np.sort(self.sample(self.stamps, self.sz))
self.ts1 = Series(np.random.randn(self.sz), self.idx1)
self.ts2 = Series(np.random.randn(self.sz), self.idx2)
def time_series_align_left_monotonic(self):
self.ts1.align(self.ts2, join='left')
def sample(self, values, k):
self.sampler = np.random.permutation(len(values))
return values.take(self.sampler[:k])