forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathindexing.py
482 lines (321 loc) · 12.1 KB
/
indexing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
from .pandas_vb_common import *
try:
import pandas.computation.expressions as expr
except:
expr = None
class dataframe_getitem_scalar(object):
goal_time = 0.2
def setup(self):
self.index = tm.makeStringIndex(1000)
self.columns = tm.makeStringIndex(30)
self.df = DataFrame(np.random.rand(1000, 30), index=self.index, columns=self.columns)
self.idx = self.index[100]
self.col = self.columns[10]
def time_dataframe_getitem_scalar(self):
self.df[self.col][self.idx]
class series_get_value(object):
goal_time = 0.2
def setup(self):
self.index = tm.makeStringIndex(1000)
self.s = Series(np.random.rand(1000), index=self.index)
self.idx = self.index[100]
def time_series_get_value(self):
self.s.get_value(self.idx)
class time_series_getitem_scalar(object):
goal_time = 0.2
def setup(self):
tm.N = 1000
self.ts = tm.makeTimeSeries()
self.dt = self.ts.index[500]
def time_time_series_getitem_scalar(self):
self.ts[self.dt]
class frame_iloc_big(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(dict(A=(['foo'] * 1000000)))
def time_frame_iloc_big(self):
self.df.iloc[:100, 0]
class frame_iloc_dups(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame({'A': ([0.1] * 3000), 'B': ([1] * 3000), })
self.idx = (np.array(range(30)) * 99)
self.df2 = DataFrame({'A': ([0.1] * 1000), 'B': ([1] * 1000), })
self.df2 = concat([self.df2, (2 * self.df2), (3 * self.df2)])
def time_frame_iloc_dups(self):
self.df2.iloc[self.idx]
class frame_loc_dups(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame({'A': ([0.1] * 3000), 'B': ([1] * 3000), })
self.idx = (np.array(range(30)) * 99)
self.df2 = DataFrame({'A': ([0.1] * 1000), 'B': ([1] * 1000), })
self.df2 = concat([self.df2, (2 * self.df2), (3 * self.df2)])
def time_frame_loc_dups(self):
self.df2.loc[self.idx]
class frame_xs_mi_ix(object):
goal_time = 0.2
def setup(self):
self.mi = MultiIndex.from_tuples([(x, y) for x in range(1000) for y in range(1000)])
self.s = Series(np.random.randn(1000000), index=self.mi)
self.df = DataFrame(self.s)
def time_frame_xs_mi_ix(self):
self.df.ix[999]
class indexing_dataframe_boolean(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(50000, 100))
self.df2 = DataFrame(np.random.randn(50000, 100))
def time_indexing_dataframe_boolean(self):
(self.df > self.df2)
class indexing_dataframe_boolean_no_ne(object):
goal_time = 0.2
def setup(self):
if (expr is None):
raise NotImplementedError
self.df = DataFrame(np.random.randn(50000, 100))
self.df2 = DataFrame(np.random.randn(50000, 100))
expr.set_use_numexpr(False)
def time_indexing_dataframe_boolean_no_ne(self):
(self.df > self.df2)
def teardown(self):
expr.set_use_numexpr(True)
class indexing_dataframe_boolean_rows(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(10000, 4), columns=['A', 'B', 'C', 'D'])
self.indexer = (self.df['B'] > 0)
self.obj_indexer = self.indexer.astype('O')
def time_indexing_dataframe_boolean_rows(self):
self.df[self.indexer]
class indexing_dataframe_boolean_rows_object(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(10000, 4), columns=['A', 'B', 'C', 'D'])
self.indexer = (self.df['B'] > 0)
self.obj_indexer = self.indexer.astype('O')
def time_indexing_dataframe_boolean_rows_object(self):
self.df[self.obj_indexer]
class indexing_dataframe_boolean_st(object):
goal_time = 0.2
def setup(self):
if (expr is None):
raise NotImplementedError
self.df = DataFrame(np.random.randn(50000, 100))
self.df2 = DataFrame(np.random.randn(50000, 100))
expr.set_numexpr_threads(1)
def time_indexing_dataframe_boolean_st(self):
(self.df > self.df2)
def teardown(self):
expr.set_numexpr_threads()
class indexing_frame_get_value(object):
goal_time = 0.2
def setup(self):
self.index = tm.makeStringIndex(1000)
self.columns = tm.makeStringIndex(30)
self.df = DataFrame(np.random.randn(1000, 30), index=self.index, columns=self.columns)
self.idx = self.index[100]
self.col = self.columns[10]
def time_indexing_frame_get_value(self):
self.df.get_value(self.idx, self.col)
class indexing_frame_get_value_ix(object):
goal_time = 0.2
def setup(self):
self.index = tm.makeStringIndex(1000)
self.columns = tm.makeStringIndex(30)
self.df = DataFrame(np.random.randn(1000, 30), index=self.index, columns=self.columns)
self.idx = self.index[100]
self.col = self.columns[10]
def time_indexing_frame_get_value_ix(self):
self.df.ix[(self.idx, self.col)]
class indexing_panel_subset(object):
goal_time = 0.2
def setup(self):
self.p = Panel(np.random.randn(100, 100, 100))
self.inds = range(0, 100, 10)
def time_indexing_panel_subset(self):
self.p.ix[(self.inds, self.inds, self.inds)]
class multiindex_slicers(object):
goal_time = 0.2
def setup(self):
np.random.seed(1234)
self.idx = pd.IndexSlice
self.n = 100000
self.mdt = pandas.DataFrame()
self.mdt['A'] = np.random.choice(range(10000, 45000, 1000), self.n)
self.mdt['B'] = np.random.choice(range(10, 400), self.n)
self.mdt['C'] = np.random.choice(range(1, 150), self.n)
self.mdt['D'] = np.random.choice(range(10000, 45000), self.n)
self.mdt['x'] = np.random.choice(range(400), self.n)
self.mdt['y'] = np.random.choice(range(25), self.n)
self.test_A = 25000
self.test_B = 25
self.test_C = 40
self.test_D = 35000
self.eps_A = 5000
self.eps_B = 5
self.eps_C = 5
self.eps_D = 5000
self.mdt2 = self.mdt.set_index(['A', 'B', 'C', 'D']).sortlevel()
def time_multiindex_slicers(self):
self.mdt2.loc[self.idx[(self.test_A - self.eps_A):(self.test_A + self.eps_A), (self.test_B - self.eps_B):(self.test_B + self.eps_B), (self.test_C - self.eps_C):(self.test_C + self.eps_C), (self.test_D - self.eps_D):(self.test_D + self.eps_D)], :]
class series_getitem_array(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_getitem_array(self):
self.s[np.arange(10000)]
class series_getitem_label_slice(object):
goal_time = 0.2
def setup(self):
self.index = tm.makeStringIndex(1000000)
self.s = Series(np.random.rand(1000000), index=self.index)
self.lbl = self.s.index[800000]
def time_series_getitem_label_slice(self):
self.s[:self.lbl]
class series_getitem_list_like(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_getitem_list_like(self):
self.s[[800000]]
class series_getitem_pos_slice(object):
goal_time = 0.2
def setup(self):
self.index = tm.makeStringIndex(1000000)
self.s = Series(np.random.rand(1000000), index=self.index)
def time_series_getitem_pos_slice(self):
self.s[:800000]
class series_getitem_scalar(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_getitem_scalar(self):
self.s[800000]
class series_getitem_slice(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_getitem_slice(self):
self.s[:800000]
class series_iloc_array(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_iloc_array(self):
self.s.iloc[np.arange(10000)]
class series_iloc_list_like(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_iloc_list_like(self):
self.s.iloc[[800000]]
class series_iloc_scalar(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_iloc_scalar(self):
self.s.iloc[800000]
class series_iloc_slice(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_iloc_slice(self):
self.s.iloc[:800000]
class series_ix_array(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_ix_array(self):
self.s.ix[np.arange(10000)]
class series_ix_list_like(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_ix_list_like(self):
self.s.ix[[800000]]
class series_ix_scalar(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_ix_scalar(self):
self.s.ix[800000]
class series_ix_slice(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_ix_slice(self):
self.s.ix[:800000]
class series_loc_array(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_loc_array(self):
self.s.loc[np.arange(10000)]
class series_loc_list_like(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_loc_list_like(self):
self.s.loc[[800000]]
class series_loc_scalar(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_loc_scalar(self):
self.s.loc[800000]
class series_loc_slice(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(1000000))
def time_series_loc_slice(self):
self.s.loc[:800000]
class series_take_dtindex(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(100000))
self.ts = Series(np.random.rand(100000), index=date_range('2011-01-01', freq='S', periods=100000))
self.indexer = ([True, False, True, True, False] * 20000)
def time_series_take_dtindex(self):
self.ts.take(self.indexer)
class series_take_intindex(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.rand(100000))
self.ts = Series(np.random.rand(100000), index=date_range('2011-01-01', freq='S', periods=100000))
self.indexer = ([True, False, True, True, False] * 20000)
def time_series_take_intindex(self):
self.s.take(self.indexer)
class series_xs_mi_ix(object):
goal_time = 0.2
def setup(self):
self.mi = MultiIndex.from_tuples([(x, y) for x in range(1000) for y in range(1000)])
self.s = Series(np.random.randn(1000000), index=self.mi)
def time_series_xs_mi_ix(self):
self.s.ix[999]
class sort_level_one(object):
goal_time = 0.2
def setup(self):
self.a = np.repeat(np.arange(100), 1000)
self.b = np.tile(np.arange(1000), 100)
self.midx = MultiIndex.from_arrays([self.a, self.b])
self.midx = self.midx.take(np.random.permutation(np.arange(100000)))
def time_sort_level_one(self):
self.midx.sortlevel(1)
class sort_level_zero(object):
goal_time = 0.2
def setup(self):
self.a = np.repeat(np.arange(100), 1000)
self.b = np.tile(np.arange(1000), 100)
self.midx = MultiIndex.from_arrays([self.a, self.b])
self.midx = self.midx.take(np.random.permutation(np.arange(100000)))
def time_sort_level_zero(self):
self.midx.sortlevel(0)
class float_loc(object):
# GH 13166
goal_time = 0.2
def setup(self):
a = np.arange(100000)
self.ind = pd.Float64Index(a * 4.8000000418824129e-08)
def time_float_loc(self):
self.ind.get_loc(0)