jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
A wind rose chart (also known as a polar bar chart) is a graphical tool used to visualize how wind speed and direction are typically distributed at a given location. You can use the px.bar_polar
function from Plotly Express as below, otherwise use go.Barpolar
as explained in the next section.
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.
import plotly.express as px
df = px.data.wind()
fig = px.bar_polar(df, r="frequency", theta="direction",
color="strength", template="plotly_dark",
color_discrete_sequence= px.colors.sequential.Plasma_r)
fig.show()
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Barpolar(
r=[77.5, 72.5, 70.0, 45.0, 22.5, 42.5, 40.0, 62.5],
name='11-14 m/s',
marker_color='rgb(106,81,163)'
))
fig.add_trace(go.Barpolar(
r=[57.5, 50.0, 45.0, 35.0, 20.0, 22.5, 37.5, 55.0],
name='8-11 m/s',
marker_color='rgb(158,154,200)'
))
fig.add_trace(go.Barpolar(
r=[40.0, 30.0, 30.0, 35.0, 7.5, 7.5, 32.5, 40.0],
name='5-8 m/s',
marker_color='rgb(203,201,226)'
))
fig.add_trace(go.Barpolar(
r=[20.0, 7.5, 15.0, 22.5, 2.5, 2.5, 12.5, 22.5],
name='< 5 m/s',
marker_color='rgb(242,240,247)'
))
fig.update_traces(text=['North', 'N-E', 'East', 'S-E', 'South', 'S-W', 'West', 'N-W'])
fig.update_layout(
title='Wind Speed Distribution in Laurel, NE',
font_size=16,
legend_font_size=16,
polar_radialaxis_ticksuffix='%',
polar_angularaxis_rotation=90,
)
fig.show()
See function reference for px.(bar_polar)
or https://plotly.com/python/reference/barpolar/ for more information and chart attribute options!