-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathref.rs
874 lines (841 loc) · 27.2 KB
/
ref.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
//! Provides the wrapper type `Volatile`, which wraps a reference to any copy-able type and allows
//! for volatile memory access to wrapped value. Volatile memory accesses are never optimized away
//! by the compiler, and are useful in many low-level systems programming and concurrent contexts.
//!
//! The wrapper types *do not* enforce any atomicity guarantees; to also get atomicity, consider
//! looking at the `Atomic` wrapper types found in `libcore` or `libstd`.
#![no_std]
#![cfg_attr(feature = "unstable", feature(core_intrinsics))]
#![cfg_attr(feature = "unstable", feature(slice_range))]
#![cfg_attr(feature = "unstable", allow(incomplete_features))]
#![cfg_attr(all(feature = "unstable", test), feature(slice_as_chunks))]
#![warn(missing_docs)]
use access::{ReadOnly, ReadWrite, Readable, Writable, WriteOnly};
use core::{
fmt,
marker::PhantomData,
ops::{Deref, DerefMut, Index, IndexMut},
ptr,
slice::SliceIndex,
};
#[cfg(feature = "unstable")]
use core::{
intrinsics,
ops::{Range, RangeBounds},
slice::range,
};
/// Allows creating read-only and write-only `Volatile` values.
pub mod access;
/// Wraps a reference to make accesses to the referenced value volatile.
///
/// Allows volatile reads and writes on the referenced value. The referenced value needs to
/// be `Copy` for reading and writing, as volatile reads and writes take and return copies
/// of the value.
///
/// Since not all volatile resources (e.g. memory mapped device registers) are both readable
/// and writable, this type supports limiting the allowed access types through an optional second
/// generic parameter `A` that can be one of `ReadWrite`, `ReadOnly`, or `WriteOnly`. It defaults
/// to `ReadWrite`, which allows all operations.
///
/// The size of this struct is the same as the size of the contained reference.
#[derive(Clone)]
#[repr(transparent)]
pub struct Volatile<R, A = ReadWrite> {
reference: R,
access: PhantomData<A>,
}
/// Constructor functions for creating new values
///
/// These functions allow to construct a new `Volatile` instance from a reference type. While
/// the `new` function creates a `Volatile` instance with unrestricted access, there are also
/// functions for creating read-only or write-only instances.
impl<R> Volatile<R> {
/// Constructs a new volatile instance wrapping the given reference.
///
/// While it is possible to construct `Volatile` instances from arbitrary values (including
/// non-reference values), most of the methods are only available when the wrapped type is
/// a reference. The only reason that we don't forbid non-reference types in the constructor
/// functions is that the Rust compiler does not support trait bounds on generic `const`
/// functions yet. When this becomes possible, we will release a new version of this library
/// with removed support for non-references. For these reasons it is recommended to use
/// the `Volatile` type only with references.
///
/// ## Example
///
/// ```rust
/// use volatile::Volatile;
///
/// let mut value = 0u32;
///
/// let mut volatile = Volatile::new(&mut value);
/// volatile.write(1);
/// assert_eq!(volatile.read(), 1);
/// ```
pub const fn new(reference: R) -> Volatile<R> {
Volatile {
reference,
access: PhantomData,
}
}
/// Constructs a new read-only volatile instance wrapping the given reference.
///
/// This is equivalent to the `new` function with the difference that the returned
/// `Volatile` instance does not permit write operations. This is for example useful
/// with memory-mapped hardware registers that are defined as read-only by the hardware.
///
/// ## Example
///
/// Reading is allowed:
///
/// ```rust
/// use volatile::Volatile;
///
/// let value = 0u32;
///
/// let volatile = Volatile::new_read_only(&value);
/// assert_eq!(volatile.read(), 0);
/// ```
///
/// But writing is not:
///
/// ```compile_fail
/// use volatile::Volatile;
///
/// let mut value = 0u32;
///
/// let mut volatile = Volatile::new_read_only(&mut value);
/// volatile.write(1);
/// //ERROR: ^^^^^ the trait `volatile::access::Writable` is not implemented
/// // for `volatile::access::ReadOnly`
/// ```
pub const fn new_read_only(reference: R) -> Volatile<R, ReadOnly> {
Volatile {
reference,
access: PhantomData,
}
}
/// Constructs a new write-only volatile instance wrapping the given reference.
///
/// This is equivalent to the `new` function with the difference that the returned
/// `Volatile` instance does not permit read operations. This is for example useful
/// with memory-mapped hardware registers that are defined as write-only by the hardware.
///
/// ## Example
///
/// Writing is allowed:
///
/// ```rust
/// use volatile::Volatile;
///
/// let mut value = 0u32;
///
/// let mut volatile = Volatile::new_write_only(&mut value);
/// volatile.write(1);
/// ```
///
/// But reading is not:
///
/// ```compile_fail
/// use volatile::Volatile;
///
/// let value = 0u32;
///
/// let volatile = Volatile::new_write_only(&value);
/// volatile.read();
/// //ERROR: ^^^^ the trait `volatile::access::Readable` is not implemented
/// // for `volatile::access::WriteOnly`
/// ```
pub const fn new_write_only(reference: R) -> Volatile<R, WriteOnly> {
Volatile {
reference,
access: PhantomData,
}
}
}
/// Methods for references to `Copy` types
impl<R, T, A> Volatile<R, A>
where
R: Deref<Target = T>,
T: Copy,
{
/// Performs a volatile read of the contained value.
///
/// Returns a copy of the read value. Volatile reads are guaranteed not to be optimized
/// away by the compiler, but by themselves do not have atomic ordering
/// guarantees. To also get atomicity, consider looking at the `Atomic` wrapper types of
/// the standard/`core` library.
///
/// ## Examples
///
/// ```rust
/// use volatile::Volatile;
///
/// let value = 42;
/// let shared_reference = Volatile::new(&value);
/// assert_eq!(shared_reference.read(), 42);
///
/// let mut value = 50;
/// let mut_reference = Volatile::new(&mut value);
/// assert_eq!(mut_reference.read(), 50);
/// ```
pub fn read(&self) -> T
where
A: Readable,
{
// UNSAFE: Safe, as we know that our internal value exists.
unsafe { ptr::read_volatile(&*self.reference) }
}
/// Performs a volatile write, setting the contained value to the given `value`.
///
/// Volatile writes are guaranteed to not be optimized away by the compiler, but by
/// themselves do not have atomic ordering guarantees. To also get atomicity, consider
/// looking at the `Atomic` wrapper types of the standard/`core` library.
///
/// ## Example
///
/// ```rust
/// use volatile::Volatile;
///
/// let mut value = 42;
/// let mut volatile = Volatile::new(&mut value);
/// volatile.write(50);
///
/// assert_eq!(volatile.read(), 50);
/// ```
pub fn write(&mut self, value: T)
where
A: Writable,
R: DerefMut,
{
// UNSAFE: Safe, as we know that our internal value exists.
unsafe { ptr::write_volatile(&mut *self.reference, value) };
}
/// Updates the contained value using the given closure and volatile instructions.
///
/// Performs a volatile read of the contained value, passes a mutable reference to it to the
/// function `f`, and then performs a volatile write of the (potentially updated) value back to
/// the contained value.
///
/// ```rust
/// use volatile::Volatile;
///
/// let mut value = 42;
/// let mut volatile = Volatile::new(&mut value);
/// volatile.update(|val| *val += 1);
///
/// assert_eq!(volatile.read(), 43);
/// ```
pub fn update<F>(&mut self, f: F)
where
A: Readable + Writable,
R: DerefMut,
F: FnOnce(&mut T),
{
let mut value = self.read();
f(&mut value);
self.write(value);
}
}
/// Method for extracting the wrapped value.
impl<R, A> Volatile<R, A> {
/// Extracts the inner value stored in the wrapper type.
///
/// This method gives direct access to the wrapped reference and thus allows
/// non-volatile access again. This is seldom what you want since there is usually
/// a reason that a reference is wrapped in `Volatile`. However, in some cases it might
/// be required or useful to use the `read_volatile`/`write_volatile` pointer methods of
/// the standard library directly, which this method makes possible.
///
/// Since no memory safety violation can occur when accessing the referenced value using
/// non-volatile operations, this method is safe. However, it _can_ lead to bugs at the
/// application level, so this method should be used with care.
///
/// ## Example
///
/// ```
/// use volatile::Volatile;
///
/// let mut value = 42;
/// let mut volatile = Volatile::new(&mut value);
/// volatile.write(50);
/// let unwrapped: &mut i32 = volatile.extract_inner();
///
/// assert_eq!(*unwrapped, 50); // non volatile access, be careful!
/// ```
pub fn extract_inner(self) -> R {
self.reference
}
}
/// Transformation methods for accessing struct fields
impl<R, T, A> Volatile<R, A>
where
R: Deref<Target = T>,
T: ?Sized,
{
/// Constructs a new `Volatile` reference by mapping the wrapped value.
///
/// This method is useful for accessing individual fields of volatile structs.
///
/// Note that this method gives temporary access to the wrapped reference, which allows
/// accessing the value in a non-volatile way. This is normally not what you want, so
/// **this method should only be used for reference-to-reference transformations**.
///
/// ## Examples
///
/// Accessing a struct field:
///
/// ```
/// use volatile::Volatile;
///
/// struct Example { field_1: u32, field_2: u8, }
/// let mut value = Example { field_1: 15, field_2: 255 };
/// let mut volatile = Volatile::new(&mut value);
///
/// // construct a volatile reference to a field
/// let field_2 = volatile.map(|example| &example.field_2);
/// assert_eq!(field_2.read(), 255);
/// ```
///
/// Don't misuse this method to do a non-volatile read of the referenced value:
///
/// ```
/// use volatile::Volatile;
///
/// let mut value = 5;
/// let mut volatile = Volatile::new(&mut value);
///
/// // DON'T DO THIS:
/// let mut readout = 0;
/// volatile.map(|value| {
/// readout = *value; // non-volatile read, might lead to bugs
/// value
/// });
/// ```
pub fn map<'a, F, U>(&'a self, f: F) -> Volatile<&'a U, A>
where
F: FnOnce(&'a T) -> &'a U,
U: ?Sized,
T: 'a,
{
Volatile {
reference: f(self.reference.deref()),
access: self.access,
}
}
/// Constructs a new mutable `Volatile` reference by mapping the wrapped value.
///
/// This method is useful for accessing individual fields of volatile structs.
///
/// Note that this method gives temporary access to the wrapped reference, which allows
/// accessing the value in a non-volatile way. This is normally not what you want, so
/// **this method should only be used for reference-to-reference transformations**.
///
/// ## Examples
///
/// Accessing a struct field:
///
/// ```
/// use volatile::Volatile;
///
/// struct Example { field_1: u32, field_2: u8, }
/// let mut value = Example { field_1: 15, field_2: 255 };
/// let mut volatile = Volatile::new(&mut value);
///
/// // construct a volatile reference to a field
/// let mut field_2 = volatile.map_mut(|example| &mut example.field_2);
/// field_2.write(128);
/// assert_eq!(field_2.read(), 128);
/// ```
///
/// Don't misuse this method to do a non-volatile read or write of the referenced value:
///
/// ```
/// use volatile::Volatile;
///
/// let mut value = 5;
/// let mut volatile = Volatile::new(&mut value);
///
/// // DON'T DO THIS:
/// volatile.map_mut(|value| {
/// *value = 10; // non-volatile write, might lead to bugs
/// value
/// });
/// ```
pub fn map_mut<'a, F, U>(&'a mut self, f: F) -> Volatile<&'a mut U, A>
where
F: FnOnce(&mut T) -> &mut U,
R: DerefMut,
U: ?Sized,
T: 'a,
{
Volatile {
reference: f(&mut self.reference),
access: self.access,
}
}
}
/// Methods for volatile slices
impl<T, R, A> Volatile<R, A>
where
R: Deref<Target = [T]>,
{
/// Applies the index operation on the wrapped slice.
///
/// Returns a shared `Volatile` reference to the resulting subslice.
///
/// This is a convenience method for the `map(|slice| slice.index(index))` operation, so it
/// has the same behavior as the indexing operation on slice (e.g. panic if index is
/// out-of-bounds).
///
/// ## Examples
///
/// Accessing a single slice element:
///
/// ```
/// use volatile::Volatile;
///
/// let array = [1, 2, 3];
/// let slice = &array[..];
/// let volatile = Volatile::new(slice);
/// assert_eq!(volatile.index(1).read(), 2);
/// ```
///
/// Accessing a subslice:
///
/// ```
/// use volatile::Volatile;
///
/// let array = [1, 2, 3];
/// let slice = &array[..];
/// let volatile = Volatile::new(slice);
/// let subslice = volatile.index(1..);
/// assert_eq!(subslice.index(0).read(), 2);
/// ```
pub fn index<'a, I>(&'a self, index: I) -> Volatile<&'a I::Output, A>
where
I: SliceIndex<[T]>,
T: 'a,
{
self.map(|slice| slice.index(index))
}
/// Applies the mutable index operation on the wrapped slice.
///
/// Returns a mutable `Volatile` reference to the resulting subslice.
///
/// This is a convenience method for the `map_mut(|slice| slice.index_mut(index))`
/// operation, so it has the same behavior as the indexing operation on slice
/// (e.g. panic if index is out-of-bounds).
///
/// ## Examples
///
/// Accessing a single slice element:
///
/// ```
/// use volatile::Volatile;
///
/// let mut array = [1, 2, 3];
/// let slice = &mut array[..];
/// let mut volatile = Volatile::new(slice);
/// volatile.index_mut(1).write(6);
/// assert_eq!(volatile.index(1).read(), 6);
/// ```
///
/// Accessing a subslice:
///
/// ```
/// use volatile::Volatile;
///
/// let mut array = [1, 2, 3];
/// let slice = &mut array[..];
/// let mut volatile = Volatile::new(slice);
/// let mut subslice = volatile.index_mut(1..);
/// subslice.index_mut(0).write(6);
/// assert_eq!(subslice.index(0).read(), 6);
/// ```
pub fn index_mut<'a, I>(&'a mut self, index: I) -> Volatile<&mut I::Output, A>
where
I: SliceIndex<[T]>,
R: DerefMut,
T: 'a,
{
self.map_mut(|slice| slice.index_mut(index))
}
/// Copies all elements from `self` into `dst`, using a volatile memcpy.
///
/// The length of `dst` must be the same as `self`.
///
/// The method is only available with the `unstable` feature enabled (requires a nightly
/// Rust compiler).
///
/// ## Panics
///
/// This function will panic if the two slices have different lengths.
///
/// ## Examples
///
/// Copying two elements from a volatile slice:
///
/// ```
/// use volatile::Volatile;
///
/// let src = [1, 2];
/// // the `Volatile` type does not work with arrays, so convert `src` to a slice
/// let slice = &src[..];
/// let volatile = Volatile::new(slice);
/// let mut dst = [5, 0, 0];
///
/// // Because the slices have to be the same length,
/// // we slice the destination slice from three elements
/// // to two. It will panic if we don't do this.
/// volatile.copy_into_slice(&mut dst[1..]);
///
/// assert_eq!(src, [1, 2]);
/// assert_eq!(dst, [5, 1, 2]);
/// ```
#[cfg(feature = "unstable")]
pub fn copy_into_slice(&self, dst: &mut [T])
where
T: Copy,
{
let src = self.reference.deref();
assert_eq!(
src.len(),
dst.len(),
"destination and source slices have different lengths"
);
unsafe {
intrinsics::volatile_copy_nonoverlapping_memory(
dst.as_mut_ptr(),
src.as_ptr(),
src.len(),
);
}
}
/// Copies all elements from `src` into `self`, using a volatile memcpy.
///
/// The length of `src` must be the same as `self`.
///
/// This method is similar to the `slice::copy_from_slice` method of the standard library. The
/// difference is that this method performs a volatile copy.
///
/// The method is only available with the `unstable` feature enabled (requires a nightly
/// Rust compiler).
///
/// ## Panics
///
/// This function will panic if the two slices have different lengths.
///
/// ## Examples
///
/// Copying two elements from a slice into a volatile slice:
///
/// ```
/// use volatile::Volatile;
///
/// let src = [1, 2, 3, 4];
/// let mut dst = [0, 0];
/// // the `Volatile` type does not work with arrays, so convert `dst` to a slice
/// let slice = &mut dst[..];
/// let mut volatile = Volatile::new(slice);
///
/// // Because the slices have to be the same length,
/// // we slice the source slice from four elements
/// // to two. It will panic if we don't do this.
/// volatile.copy_from_slice(&src[2..]);
///
/// assert_eq!(src, [1, 2, 3, 4]);
/// assert_eq!(dst, [3, 4]);
/// ```
#[cfg(feature = "unstable")]
pub fn copy_from_slice(&mut self, src: &[T])
where
T: Copy,
R: DerefMut,
{
let dest = self.reference.deref_mut();
assert_eq!(
dest.len(),
src.len(),
"destination and source slices have different lengths"
);
unsafe {
intrinsics::volatile_copy_nonoverlapping_memory(
dest.as_mut_ptr(),
src.as_ptr(),
dest.len(),
);
}
}
/// Copies elements from one part of the slice to another part of itself, using a
/// volatile `memmove`.
///
/// `src` is the range within `self` to copy from. `dest` is the starting index of the
/// range within `self` to copy to, which will have the same length as `src`. The two ranges
/// may overlap. The ends of the two ranges must be less than or equal to `self.len()`.
///
/// This method is similar to the `slice::copy_within` method of the standard library. The
/// difference is that this method performs a volatile copy.
///
/// This method is only available with the `unstable` feature enabled (requires a nightly
/// Rust compiler).
///
/// ## Panics
///
/// This function will panic if either range exceeds the end of the slice, or if the end
/// of `src` is before the start.
///
/// ## Examples
///
/// Copying four bytes within a slice:
///
/// ```
/// use volatile::Volatile;
///
/// let mut byte_array = *b"Hello, World!";
/// let mut slice: &mut [u8] = &mut byte_array[..];
/// let mut volatile = Volatile::new(slice);
///
/// volatile.copy_within(1..5, 8);
///
/// assert_eq!(&byte_array, b"Hello, Wello!");
#[cfg(feature = "unstable")]
pub fn copy_within(&mut self, src: impl RangeBounds<usize>, dest: usize)
where
T: Copy,
R: DerefMut,
{
let slice = self.reference.deref_mut();
// implementation taken from https://github.com/rust-lang/rust/blob/683d1bcd405727fcc9209f64845bd3b9104878b8/library/core/src/slice/mod.rs#L2726-L2738
let Range {
start: src_start,
end: src_end,
} = range(src, ..slice.len());
let count = src_end - src_start;
assert!(dest <= slice.len() - count, "dest is out of bounds");
// SAFETY: the conditions for `volatile_copy_memory` have all been checked above,
// as have those for `ptr::add`.
unsafe {
intrinsics::volatile_copy_memory(
slice.as_mut_ptr().add(dest),
slice.as_ptr().add(src_start),
count,
);
}
}
}
/// Methods for volatile byte slices
impl<R, A> Volatile<R, A>
where
R: Deref<Target = [u8]>,
{
/// Sets all elements of the byte slice to the given `value` using a volatile `memset`.
///
/// This method is similar to the `slice::fill` method of the standard library, with the
/// difference that this method performs a volatile write operation. Another difference
/// is that this method is only available for byte slices (not general `&mut [T]` slices)
/// because there currently isn't a instrinsic function that allows non-`u8` values.
///
/// This method is only available with the `unstable` feature enabled (requires a nightly
/// Rust compiler).
///
/// ## Example
///
/// ```rust
/// use volatile::Volatile;
///
/// let mut buf = Volatile::new(vec![0; 10]);
/// buf.fill(1);
/// assert_eq!(buf.extract_inner(), vec![1; 10]);
/// ```
#[cfg(feature = "unstable")]
pub fn fill(&mut self, value: u8)
where
R: DerefMut,
{
let dest = self.reference.deref_mut();
unsafe {
intrinsics::volatile_set_memory(dest.as_mut_ptr(), value, dest.len());
}
}
}
/// Methods for converting arrays to slices
impl<R, A, T, const N: usize> Volatile<R, A>
where
R: Deref<Target = [T; N]>,
{
/// Converts an array reference to a shared slice.
///
/// This makes it possible to use the methods defined on slices.
///
/// ## Example
///
/// Reading a subslice from a volatile array reference using `index`:
///
/// ```
/// use volatile::Volatile;
///
/// let src = [1, 2, 3, 4];
/// let volatile = Volatile::new(&src);
///
/// // convert the `Volatile<&[i32; 4]>` array reference to a `Volatile<&[i32]>` slice
/// let volatile_slice = volatile.as_slice();
/// // we can now use the slice methods
/// let subslice = volatile_slice.index(2..);
///
/// assert_eq!(subslice.index(0).read(), 3);
/// assert_eq!(subslice.index(1).read(), 4);
/// ```
pub fn as_slice(&self) -> Volatile<&[T], A> {
self.map(|array| &array[..])
}
/// Converts a mutable array reference to a mutable slice.
///
/// This makes it possible to use the methods defined on slices.
///
/// ## Example
///
/// Writing to an index of a mutable array reference:
///
/// ```
/// use volatile::Volatile;
///
/// let mut dst = [0, 0];
/// let mut volatile = Volatile::new(&mut dst);
///
/// // convert the `Volatile<&mut [i32; 2]>` array reference to a `Volatile<&mut [i32]>` slice
/// let mut volatile_slice = volatile.as_mut_slice();
/// // we can now use the slice methods
/// volatile_slice.index_mut(1).write(1);
///
/// assert_eq!(dst, [0, 1]);
/// ```
pub fn as_mut_slice(&mut self) -> Volatile<&mut [T], A>
where
R: DerefMut,
{
self.map_mut(|array| &mut array[..])
}
}
/// Methods for restricting access.
impl<R> Volatile<R> {
/// Restricts access permissions to read-only.
///
/// ## Example
///
/// ```
/// use volatile::Volatile;
///
/// let mut value: i16 = -4;
/// let mut volatile = Volatile::new(&mut value);
///
/// let read_only = volatile.read_only();
/// assert_eq!(read_only.read(), -4);
/// // read_only.write(10); // compile-time error
/// ```
pub fn read_only(self) -> Volatile<R, ReadOnly> {
Volatile {
reference: self.reference,
access: PhantomData,
}
}
/// Restricts access permissions to write-only.
///
/// ## Example
///
/// Creating a write-only reference to a struct field:
///
/// ```
/// use volatile::Volatile;
///
/// struct Example { field_1: u32, field_2: u8, }
/// let mut value = Example { field_1: 15, field_2: 255 };
/// let mut volatile = Volatile::new(&mut value);
///
/// // construct a volatile write-only reference to `field_2`
/// let mut field_2 = volatile.map_mut(|example| &mut example.field_2).write_only();
/// field_2.write(14);
/// // field_2.read(); // compile-time error
/// ```
pub fn write_only(self) -> Volatile<R, WriteOnly> {
Volatile {
reference: self.reference,
access: PhantomData,
}
}
}
impl<R, T, A> fmt::Debug for Volatile<R, A>
where
R: Deref<Target = T>,
T: Copy + fmt::Debug,
A: Readable,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Volatile").field(&self.read()).finish()
}
}
impl<R> fmt::Debug for Volatile<R, WriteOnly>
where
R: Deref,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Volatile").field(&"[write-only]").finish()
}
}
#[cfg(test)]
mod tests {
use super::Volatile;
#[test]
fn test_read() {
let val = 42;
assert_eq!(Volatile::new(&val).read(), 42);
}
#[test]
fn test_write() {
let mut val = 50;
let mut volatile = Volatile::new(&mut val);
volatile.write(50);
assert_eq!(val, 50);
}
#[test]
fn test_update() {
let mut val = 42;
let mut volatile = Volatile::new(&mut val);
volatile.update(|v| *v += 1);
assert_eq!(val, 43);
}
#[test]
fn test_slice() {
let mut val = [1, 2, 3];
let mut volatile = Volatile::new(&mut val[..]);
volatile.index_mut(0).update(|v| *v += 1);
assert_eq!(val, [2, 2, 3]);
}
#[test]
fn test_struct() {
struct S {
field_1: u32,
field_2: bool,
}
let mut val = S {
field_1: 60,
field_2: true,
};
let mut volatile = Volatile::new(&mut val);
volatile.map_mut(|s| &mut s.field_1).update(|v| *v += 1);
let mut field_2 = volatile.map_mut(|s| &mut s.field_2);
assert!(field_2.read());
field_2.write(false);
assert_eq!(volatile.map(|s| &s.field_1).read(), 61);
assert_eq!(volatile.map(|s| &s.field_2).read(), false);
}
#[cfg(feature = "unstable")]
#[test]
fn test_chunks() {
let mut val = [1, 2, 3, 4, 5, 6];
let mut volatile = Volatile::new(&mut val[..]);
let mut chunks = volatile.map_mut(|s| s.as_chunks_mut().0);
chunks.index_mut(1).write([10, 11, 12]);
assert_eq!(chunks.index(0).read(), [1, 2, 3]);
assert_eq!(chunks.index(1).read(), [10, 11, 12]);
}
}