|
8 | 8 | // option. This file may not be copied, modified, or distributed
|
9 | 9 | // except according to those terms.
|
10 | 10 |
|
11 |
| -use std::mem; |
12 |
| -use rustc_data_structures::small_vec::SmallVec; |
13 |
| -use syntax::ast::CRATE_NODE_ID; |
14 | 11 | use util::nodemap::FxHashSet;
|
15 | 12 | use ty::context::TyCtxt;
|
16 | 13 | use ty::{AdtDef, VariantDef, FieldDef, TyS};
|
17 | 14 | use ty::{DefId, Substs};
|
18 |
| -use ty::{AdtKind, Visibility, DefIdTree}; |
| 15 | +use ty::{AdtKind, Visibility}; |
19 | 16 | use ty::TypeVariants::*;
|
20 | 17 |
|
21 |
| -/// Represents a set of DefIds closed under the ancestor relation. That is, if |
22 |
| -/// a DefId is in this set then so are all its descendants. |
23 |
| -#[derive(Clone)] |
24 |
| -pub struct DefIdForest { |
25 |
| - /// The minimal set of DefIds required to represent the whole set. |
26 |
| - /// If A and B are DefIds in the DefIdForest, and A is a desecendant |
27 |
| - /// of B, then only B will be in root_ids. |
28 |
| - /// We use a SmallVec here because (for its use in this module) its rare |
29 |
| - /// that this will contain even two ids. |
30 |
| - root_ids: SmallVec<[DefId; 1]>, |
31 |
| -} |
32 |
| - |
33 |
| -impl<'a, 'gcx, 'tcx> DefIdForest { |
34 |
| - /// Create an empty forest. |
35 |
| - pub fn empty() -> DefIdForest { |
36 |
| - DefIdForest { |
37 |
| - root_ids: SmallVec::new(), |
38 |
| - } |
39 |
| - } |
40 |
| - |
41 |
| - /// Create a forest consisting of a single tree representing the entire |
42 |
| - /// crate. |
43 |
| - #[inline] |
44 |
| - pub fn full(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> DefIdForest { |
45 |
| - let crate_id = tcx.map.local_def_id(CRATE_NODE_ID); |
46 |
| - DefIdForest::from_id(crate_id) |
47 |
| - } |
48 |
| - |
49 |
| - /// Create a forest containing a DefId and all its descendants. |
50 |
| - pub fn from_id(id: DefId) -> DefIdForest { |
51 |
| - let mut root_ids = SmallVec::new(); |
52 |
| - root_ids.push(id); |
53 |
| - DefIdForest { |
54 |
| - root_ids: root_ids, |
55 |
| - } |
56 |
| - } |
57 |
| - |
58 |
| - /// Test whether the forest is empty. |
59 |
| - pub fn is_empty(&self) -> bool { |
60 |
| - self.root_ids.is_empty() |
61 |
| - } |
62 |
| - |
63 |
| - /// Test whether the forest conains a given DefId. |
64 |
| - pub fn contains(&self, |
65 |
| - tcx: TyCtxt<'a, 'gcx, 'tcx>, |
66 |
| - id: DefId) -> bool |
67 |
| - { |
68 |
| - for root_id in self.root_ids.iter() { |
69 |
| - if tcx.is_descendant_of(id, *root_id) { |
70 |
| - return true; |
71 |
| - } |
72 |
| - } |
73 |
| - false |
74 |
| - } |
75 |
| - |
76 |
| - /// Calculate the intersection of a collection of forests. |
77 |
| - pub fn intersection<I>(tcx: TyCtxt<'a, 'gcx, 'tcx>, |
78 |
| - iter: I) -> DefIdForest |
79 |
| - where I: IntoIterator<Item=DefIdForest> |
80 |
| - { |
81 |
| - let mut ret = DefIdForest::full(tcx); |
82 |
| - let mut next_ret = SmallVec::new(); |
83 |
| - let mut old_ret: SmallVec<[DefId; 1]> = SmallVec::new(); |
84 |
| - for next_forest in iter { |
85 |
| - for id in ret.root_ids.drain(..) { |
86 |
| - if next_forest.contains(tcx, id) { |
87 |
| - next_ret.push(id); |
88 |
| - } else { |
89 |
| - old_ret.push(id); |
90 |
| - } |
91 |
| - } |
92 |
| - ret.root_ids.extend(old_ret.drain(..)); |
| 18 | +pub use self::def_id_forest::DefIdForest; |
93 | 19 |
|
94 |
| - for id in next_forest.root_ids { |
95 |
| - if ret.contains(tcx, id) { |
96 |
| - next_ret.push(id); |
97 |
| - } |
98 |
| - } |
99 |
| - |
100 |
| - mem::swap(&mut next_ret, &mut ret.root_ids); |
101 |
| - next_ret.drain(..); |
102 |
| - } |
103 |
| - ret |
104 |
| - } |
| 20 | +mod def_id_forest; |
105 | 21 |
|
106 |
| - /// Calculate the union of a collection of forests. |
107 |
| - pub fn union<I>(tcx: TyCtxt<'a, 'gcx, 'tcx>, |
108 |
| - iter: I) -> DefIdForest |
109 |
| - where I: IntoIterator<Item=DefIdForest> |
110 |
| - { |
111 |
| - let mut ret = DefIdForest::empty(); |
112 |
| - let mut next_ret = SmallVec::new(); |
113 |
| - for next_forest in iter { |
114 |
| - for id in ret.root_ids.drain(..) { |
115 |
| - if !next_forest.contains(tcx, id) { |
116 |
| - next_ret.push(id); |
117 |
| - } |
118 |
| - } |
119 |
| - |
120 |
| - for id in next_forest.root_ids { |
121 |
| - if !next_ret.contains(&id) { |
122 |
| - next_ret.push(id); |
123 |
| - } |
124 |
| - } |
125 |
| - |
126 |
| - mem::swap(&mut next_ret, &mut ret.root_ids); |
127 |
| - next_ret.drain(..); |
128 |
| - } |
129 |
| - ret |
130 |
| - } |
131 |
| -} |
| 22 | +// The methods in this module calculate DefIdForests of modules in which a |
| 23 | +// AdtDef/VariantDef/FieldDef is visibly uninhabited. |
| 24 | +// |
| 25 | +// # Example |
| 26 | +// ```rust |
| 27 | +// enum Void {} |
| 28 | +// mod a { |
| 29 | +// pub mod b { |
| 30 | +// pub struct SecretlyUninhabited { |
| 31 | +// _priv: !, |
| 32 | +// } |
| 33 | +// } |
| 34 | +// } |
| 35 | +// |
| 36 | +// mod c { |
| 37 | +// pub struct AlsoSecretlyUninhabited { |
| 38 | +// _priv: Void, |
| 39 | +// } |
| 40 | +// mod d { |
| 41 | +// } |
| 42 | +// } |
| 43 | +// |
| 44 | +// struct Foo { |
| 45 | +// x: a::b::SecretlyUninhabited, |
| 46 | +// y: c::AlsoSecretlyUninhabited, |
| 47 | +// } |
| 48 | +// ``` |
| 49 | +// In this code, the type Foo will only be visibly uninhabited inside the |
| 50 | +// modules b, c and d. Calling uninhabited_from on Foo or its AdtDef will |
| 51 | +// return the forest of modules {b, c->d} (represented in a DefIdForest by the |
| 52 | +// set {b, c}) |
| 53 | +// |
| 54 | +// We need this information for pattern-matching on Foo or types that contain |
| 55 | +// Foo. |
| 56 | +// |
| 57 | +// # Example |
| 58 | +// ```rust |
| 59 | +// let foo_result: Result<T, Foo> = ... ; |
| 60 | +// let Ok(t) = foo_result; |
| 61 | +// ``` |
| 62 | +// This code should only compile in modules where the uninhabitedness of Foo is |
| 63 | +// visible. |
132 | 64 |
|
133 | 65 | impl<'a, 'gcx, 'tcx> AdtDef {
|
134 | 66 | /// Calculate the forest of DefIds from which this adt is visibly uninhabited.
|
@@ -189,6 +121,9 @@ impl<'a, 'gcx, 'tcx> FieldDef {
|
189 | 121 | is_enum: bool) -> DefIdForest
|
190 | 122 | {
|
191 | 123 | let mut data_uninhabitedness = move || self.ty(tcx, substs).uninhabited_from(visited, tcx);
|
| 124 | + // FIXME(canndrew): Currently enum fields are (incorrectly) stored with |
| 125 | + // Visibility::Invisible so we need to override self.vis if we're |
| 126 | + // dealing with an enum. |
192 | 127 | if is_enum {
|
193 | 128 | data_uninhabitedness()
|
194 | 129 | } else {
|
|
0 commit comments