|
| 1 | +//! A variant of `SortedMap` that preserves insertion order. |
| 2 | +
|
| 3 | +use std::borrow::Borrow; |
| 4 | +use std::hash::{Hash, Hasher}; |
| 5 | +use std::iter::FromIterator; |
| 6 | + |
| 7 | +use crate::stable_hasher::{HashStable, StableHasher}; |
| 8 | +use rustc_index::vec::{Idx, IndexVec}; |
| 9 | + |
| 10 | +/// An indexed multi-map that preserves insertion order while permitting both `O(log n)` lookup of |
| 11 | +/// an item by key and `O(1)` lookup by index. |
| 12 | +/// |
| 13 | +/// This data structure is a hybrid of an [`IndexVec`] and a [`SortedMap`]. Like `IndexVec`, |
| 14 | +/// `SortedIndexMultiMap` assigns a typed index to each item while preserving insertion order. |
| 15 | +/// Like `SortedMap`, `SortedIndexMultiMap` has efficient lookup of items by key. However, this |
| 16 | +/// is accomplished by sorting an array of item indices instead of the items themselves. |
| 17 | +/// |
| 18 | +/// Unlike `SortedMap`, this data structure can hold multiple equivalent items at once, so the |
| 19 | +/// `get_by_key` method and its variants return an iterator instead of an `Option`. Equivalent |
| 20 | +/// items will be yielded in insertion order. |
| 21 | +/// |
| 22 | +/// Unlike a general-purpose map like `BTreeSet` or `HashSet`, `SortedMap` and |
| 23 | +/// `SortedIndexMultiMap` require `O(n)` time to insert a single item. This is because we may need |
| 24 | +/// to insert into the middle of the sorted array. Users should avoid mutating this data structure |
| 25 | +/// in-place. |
| 26 | +/// |
| 27 | +/// [`IndexVec`]: ../../rustc_index/vec/struct.IndexVec.html |
| 28 | +/// [`SortedMap`]: ../sorted_map/struct.SortedMap.html |
| 29 | +#[derive(Clone, Debug)] |
| 30 | +pub struct SortedIndexMultiMap<I: Idx, K, V> { |
| 31 | + /// The elements of the map in insertion order. |
| 32 | + items: IndexVec<I, (K, V)>, |
| 33 | + |
| 34 | + /// Indices of the items in the set, sorted by the item's key. |
| 35 | + idx_sorted_by_item_key: Vec<I>, |
| 36 | +} |
| 37 | + |
| 38 | +impl<I: Idx, K: Ord, V> SortedIndexMultiMap<I, K, V> { |
| 39 | + pub fn new() -> Self { |
| 40 | + SortedIndexMultiMap { items: IndexVec::new(), idx_sorted_by_item_key: Vec::new() } |
| 41 | + } |
| 42 | + |
| 43 | + pub fn len(&self) -> usize { |
| 44 | + self.items.len() |
| 45 | + } |
| 46 | + |
| 47 | + pub fn is_empty(&self) -> bool { |
| 48 | + self.items.is_empty() |
| 49 | + } |
| 50 | + |
| 51 | + /// Returns an iterator over the items in the map in insertion order. |
| 52 | + pub fn into_iter(self) -> impl DoubleEndedIterator<Item = (K, V)> { |
| 53 | + self.items.into_iter() |
| 54 | + } |
| 55 | + |
| 56 | + /// Returns an iterator over the items in the map in insertion order along with their indices. |
| 57 | + pub fn into_iter_enumerated(self) -> impl DoubleEndedIterator<Item = (I, (K, V))> { |
| 58 | + self.items.into_iter_enumerated() |
| 59 | + } |
| 60 | + |
| 61 | + /// Returns an iterator over the items in the map in insertion order. |
| 62 | + pub fn iter(&self) -> impl '_ + DoubleEndedIterator<Item = (&K, &V)> { |
| 63 | + self.items.iter().map(|(ref k, ref v)| (k, v)) |
| 64 | + } |
| 65 | + |
| 66 | + /// Returns an iterator over the items in the map in insertion order along with their indices. |
| 67 | + pub fn iter_enumerated(&self) -> impl '_ + DoubleEndedIterator<Item = (I, (&K, &V))> { |
| 68 | + self.items.iter_enumerated().map(|(i, (ref k, ref v))| (i, (k, v))) |
| 69 | + } |
| 70 | + |
| 71 | + /// Returns the item in the map with the given index. |
| 72 | + pub fn get(&self, idx: I) -> Option<&(K, V)> { |
| 73 | + self.items.get(idx) |
| 74 | + } |
| 75 | + |
| 76 | + /// Returns an iterator over the items in the map that are equal to `key`. |
| 77 | + /// |
| 78 | + /// If there are multiple items that are equivalent to `key`, they will be yielded in |
| 79 | + /// insertion order. |
| 80 | + pub fn get_by_key<Q: 'a>(&'a self, key: &Q) -> impl 'a + Iterator<Item = &'a V> |
| 81 | + where |
| 82 | + Q: Ord + ?Sized, |
| 83 | + K: Borrow<Q>, |
| 84 | + { |
| 85 | + self.get_by_key_enumerated(key).map(|(_, v)| v) |
| 86 | + } |
| 87 | + |
| 88 | + /// Returns an iterator over the items in the map that are equal to `key` along with their |
| 89 | + /// indices. |
| 90 | + /// |
| 91 | + /// If there are multiple items that are equivalent to `key`, they will be yielded in |
| 92 | + /// insertion order. |
| 93 | + pub fn get_by_key_enumerated<Q>(&self, key: &Q) -> impl '_ + Iterator<Item = (I, &V)> |
| 94 | + where |
| 95 | + Q: Ord + ?Sized, |
| 96 | + K: Borrow<Q>, |
| 97 | + { |
| 98 | + // FIXME: This should be in the standard library as `equal_range`. See rust-lang/rfcs#2184. |
| 99 | + match self.binary_search_idx(key) { |
| 100 | + Err(_) => self.idxs_to_items_enumerated(&[]), |
| 101 | + |
| 102 | + Ok(idx) => { |
| 103 | + let start = self.find_lower_bound(key, idx); |
| 104 | + let end = self.find_upper_bound(key, idx); |
| 105 | + self.idxs_to_items_enumerated(&self.idx_sorted_by_item_key[start..end]) |
| 106 | + } |
| 107 | + } |
| 108 | + } |
| 109 | + |
| 110 | + fn binary_search_idx<Q>(&self, key: &Q) -> Result<usize, usize> |
| 111 | + where |
| 112 | + Q: Ord + ?Sized, |
| 113 | + K: Borrow<Q>, |
| 114 | + { |
| 115 | + self.idx_sorted_by_item_key.binary_search_by(|&idx| self.items[idx].0.borrow().cmp(key)) |
| 116 | + } |
| 117 | + |
| 118 | + /// Returns the index into the `idx_sorted_by_item_key` array of the first item equal to |
| 119 | + /// `key`. |
| 120 | + /// |
| 121 | + /// `initial` must be an index into that same array for an item that is equal to `key`. |
| 122 | + fn find_lower_bound<Q>(&self, key: &Q, initial: usize) -> usize |
| 123 | + where |
| 124 | + Q: Ord + ?Sized, |
| 125 | + K: Borrow<Q>, |
| 126 | + { |
| 127 | + debug_assert!(self.items[self.idx_sorted_by_item_key[initial]].0.borrow() == key); |
| 128 | + |
| 129 | + // FIXME: At present, this uses linear search, meaning lookup is only `O(log n)` if duplicate |
| 130 | + // entries are rare. It would be better to start with a linear search for the common case but |
| 131 | + // fall back to an exponential search if many duplicates are found. This applies to |
| 132 | + // `upper_bound` as well. |
| 133 | + let mut start = initial; |
| 134 | + while start != 0 && self.items[self.idx_sorted_by_item_key[start - 1]].0.borrow() == key { |
| 135 | + start -= 1; |
| 136 | + } |
| 137 | + |
| 138 | + start |
| 139 | + } |
| 140 | + |
| 141 | + /// Returns the index into the `idx_sorted_by_item_key` array of the first item greater than |
| 142 | + /// `key`, or `self.len()` if no such item exists. |
| 143 | + /// |
| 144 | + /// `initial` must be an index into that same array for an item that is equal to `key`. |
| 145 | + fn find_upper_bound<Q>(&self, key: &Q, initial: usize) -> usize |
| 146 | + where |
| 147 | + Q: Ord + ?Sized, |
| 148 | + K: Borrow<Q>, |
| 149 | + { |
| 150 | + debug_assert!(self.items[self.idx_sorted_by_item_key[initial]].0.borrow() == key); |
| 151 | + |
| 152 | + // See the FIXME for `find_lower_bound`. |
| 153 | + let mut end = initial + 1; |
| 154 | + let len = self.items.len(); |
| 155 | + while end < len && self.items[self.idx_sorted_by_item_key[end]].0.borrow() == key { |
| 156 | + end += 1; |
| 157 | + } |
| 158 | + |
| 159 | + end |
| 160 | + } |
| 161 | + |
| 162 | + fn idxs_to_items_enumerated(&'a self, idxs: &'a [I]) -> impl 'a + Iterator<Item = (I, &'a V)> { |
| 163 | + idxs.iter().map(move |&idx| (idx, &self.items[idx].1)) |
| 164 | + } |
| 165 | +} |
| 166 | + |
| 167 | +impl<I: Idx, K: Eq, V: Eq> Eq for SortedIndexMultiMap<I, K, V> {} |
| 168 | +impl<I: Idx, K: PartialEq, V: PartialEq> PartialEq for SortedIndexMultiMap<I, K, V> { |
| 169 | + fn eq(&self, other: &Self) -> bool { |
| 170 | + // No need to compare the sorted index. If the items are the same, the index will be too. |
| 171 | + self.items == other.items |
| 172 | + } |
| 173 | +} |
| 174 | + |
| 175 | +impl<I: Idx, K, V> Hash for SortedIndexMultiMap<I, K, V> |
| 176 | +where |
| 177 | + K: Hash, |
| 178 | + V: Hash, |
| 179 | +{ |
| 180 | + fn hash<H: Hasher>(&self, hasher: &mut H) { |
| 181 | + self.items.hash(hasher) |
| 182 | + } |
| 183 | +} |
| 184 | +impl<I: Idx, K, V, C> HashStable<C> for SortedIndexMultiMap<I, K, V> |
| 185 | +where |
| 186 | + K: HashStable<C>, |
| 187 | + V: HashStable<C>, |
| 188 | +{ |
| 189 | + fn hash_stable(&self, ctx: &mut C, hasher: &mut StableHasher) { |
| 190 | + self.items.hash_stable(ctx, hasher) |
| 191 | + } |
| 192 | +} |
| 193 | + |
| 194 | +impl<I: Idx, K: Ord, V> FromIterator<(K, V)> for SortedIndexMultiMap<I, K, V> { |
| 195 | + fn from_iter<J>(iter: J) -> Self |
| 196 | + where |
| 197 | + J: IntoIterator<Item = (K, V)>, |
| 198 | + { |
| 199 | + let items = IndexVec::from_iter(iter); |
| 200 | + let mut idx_sorted_by_item_key: Vec<_> = items.indices().collect(); |
| 201 | + |
| 202 | + // `sort_by_key` is stable, so insertion order is preserved for duplicate items. |
| 203 | + idx_sorted_by_item_key.sort_by_key(|&idx| &items[idx].0); |
| 204 | + |
| 205 | + SortedIndexMultiMap { items, idx_sorted_by_item_key } |
| 206 | + } |
| 207 | +} |
| 208 | + |
| 209 | +impl<I: Idx, K, V> std::ops::Index<I> for SortedIndexMultiMap<I, K, V> { |
| 210 | + type Output = V; |
| 211 | + |
| 212 | + fn index(&self, idx: I) -> &Self::Output { |
| 213 | + &self.items[idx].1 |
| 214 | + } |
| 215 | +} |
| 216 | + |
| 217 | +#[cfg(tests)] |
| 218 | +mod tests; |
0 commit comments