Skip to content

Commit e0d5c19

Browse files
committed
check that Scalar layout is newtype around a suitable type
1 parent 1f5d8d4 commit e0d5c19

File tree

1 file changed

+135
-40
lines changed

1 file changed

+135
-40
lines changed

compiler/rustc_middle/src/ty/layout.rs

+135-40
Original file line numberDiff line numberDiff line change
@@ -222,13 +222,9 @@ impl<'tcx> fmt::Display for LayoutError<'tcx> {
222222
}
223223

224224
/// Enforce some basic invariants on layouts.
225-
fn sanity_check_layout<'tcx>(
226-
tcx: TyCtxt<'tcx>,
227-
param_env: ty::ParamEnv<'tcx>,
228-
layout: &TyAndLayout<'tcx>,
229-
) {
225+
fn sanity_check_layout<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
230226
// Type-level uninhabitedness should always imply ABI uninhabitedness.
231-
if tcx.conservative_is_privately_uninhabited(param_env.and(layout.ty)) {
227+
if cx.tcx.conservative_is_privately_uninhabited(cx.param_env.and(layout.ty)) {
232228
assert!(layout.abi.is_uninhabited());
233229
}
234230

@@ -237,83 +233,182 @@ fn sanity_check_layout<'tcx>(
237233
}
238234

239235
if cfg!(debug_assertions) {
240-
fn check_layout_abi<'tcx>(tcx: TyCtxt<'tcx>, layout: Layout<'tcx>) {
241-
match layout.abi() {
236+
/// Yields non-1-ZST fields of the type
237+
fn non_zst_fields<'tcx, 'a>(
238+
cx: &'a LayoutCx<'tcx, TyCtxt<'tcx>>,
239+
layout: &'a TyAndLayout<'tcx>,
240+
) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a {
241+
(0..layout.layout.fields().count()).filter_map(|i| {
242+
let field = layout.field(cx, i);
243+
let zst = field.is_zst() && field.align.abi.bytes() == 1;
244+
(!zst).then(|| (layout.fields.offset(i), field))
245+
})
246+
}
247+
248+
fn skip_newtypes<'tcx>(
249+
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
250+
layout: &TyAndLayout<'tcx>,
251+
) -> TyAndLayout<'tcx> {
252+
if matches!(layout.layout.variants(), Variants::Multiple { .. }) {
253+
// Definitely not a newtype of anything.
254+
return *layout;
255+
}
256+
let mut fields = non_zst_fields(cx, layout);
257+
let Some(first) = fields.next() else {
258+
// No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing
259+
return *layout
260+
};
261+
if fields.next().is_none() {
262+
let (offset, first) = first;
263+
if offset == Size::ZERO && first.layout.size() == layout.size {
264+
// This is a newtype, so keep recursing.
265+
// FIXME(RalfJung): I don't think it would be correct to do any checks for
266+
// alignment here, so we don't. Is that correct?
267+
return skip_newtypes(cx, &first);
268+
}
269+
}
270+
// No more newtypes here.
271+
*layout
272+
}
273+
274+
fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
275+
match layout.layout.abi() {
242276
Abi::Scalar(scalar) => {
243277
// No padding in scalars.
278+
let size = scalar.size(cx);
279+
let align = scalar.align(cx).abi;
244280
assert_eq!(
245-
layout.align().abi,
246-
scalar.align(&tcx).abi,
247-
"alignment mismatch between ABI and layout in {layout:#?}"
281+
layout.layout.size(),
282+
size,
283+
"size mismatch between ABI and layout in {layout:#?}"
248284
);
249285
assert_eq!(
250-
layout.size(),
251-
scalar.size(&tcx),
252-
"size mismatch between ABI and layout in {layout:#?}"
286+
layout.layout.align().abi,
287+
align,
288+
"alignment mismatch between ABI and layout in {layout:#?}"
253289
);
290+
// Check that this matches the underlying field.
291+
let inner = skip_newtypes(cx, layout);
292+
assert!(
293+
matches!(inner.layout.abi(), Abi::Scalar(_)),
294+
"`Scalar` type {} is newtype around non-`Scalar` type {}",
295+
layout.ty,
296+
inner.ty
297+
);
298+
match inner.layout.fields() {
299+
FieldsShape::Primitive => {
300+
// Fine.
301+
}
302+
FieldsShape::Arbitrary { .. } => {
303+
// Should be an enum, the only field is the discriminant.
304+
assert!(
305+
inner.ty.is_enum(),
306+
"`Scalar` layout for non-primitive non-enum type {}",
307+
inner.ty
308+
);
309+
assert_eq!(
310+
inner.layout.fields().count(),
311+
1,
312+
"`Scalar` layout for multiple-field type in {inner:#?}",
313+
);
314+
let offset = inner.layout.fields().offset(0);
315+
let field = inner.field(cx, 0);
316+
// The field should be at the right offset, and match the `scalar` layout.
317+
assert_eq!(
318+
offset,
319+
Size::ZERO,
320+
"`Scalar` field at non-0 offset in {inner:#?}",
321+
);
322+
assert_eq!(
323+
field.size, size,
324+
"`Scalar` field with bad size in {inner:#?}",
325+
);
326+
assert_eq!(
327+
field.align.abi, align,
328+
"`Scalar` field with bad align in {inner:#?}",
329+
);
330+
}
331+
_ => {
332+
panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty);
333+
}
334+
}
254335
}
255336
Abi::Vector { count, element } => {
256337
// No padding in vectors. Alignment can be strengthened, though.
257338
assert!(
258-
layout.align().abi >= element.align(&tcx).abi,
339+
layout.layout.align().abi >= element.align(cx).abi,
259340
"alignment mismatch between ABI and layout in {layout:#?}"
260341
);
261-
let size = element.size(&tcx) * count;
342+
let size = element.size(cx) * count;
262343
assert_eq!(
263-
layout.size(),
264-
size.align_to(tcx.data_layout().vector_align(size).abi),
344+
layout.layout.size(),
345+
size.align_to(cx.data_layout().vector_align(size).abi),
265346
"size mismatch between ABI and layout in {layout:#?}"
266347
);
267348
}
268349
Abi::ScalarPair(scalar1, scalar2) => {
269350
// Sanity-check scalar pairs. These are a bit more flexible and support
270351
// padding, but we can at least ensure both fields actually fit into the layout
271352
// and the alignment requirement has not been weakened.
272-
let align1 = scalar1.align(&tcx).abi;
273-
let align2 = scalar2.align(&tcx).abi;
353+
let align1 = scalar1.align(cx).abi;
354+
let align2 = scalar2.align(cx).abi;
274355
assert!(
275-
layout.align().abi >= cmp::max(align1, align2),
356+
layout.layout.align().abi >= cmp::max(align1, align2),
276357
"alignment mismatch between ABI and layout in {layout:#?}",
277358
);
278-
let field2_offset = scalar1.size(&tcx).align_to(align2);
359+
let field2_offset = scalar1.size(cx).align_to(align2);
279360
assert!(
280-
layout.size() >= field2_offset + scalar2.size(&tcx),
361+
layout.layout.size() >= field2_offset + scalar2.size(cx),
281362
"size mismatch between ABI and layout in {layout:#?}"
282363
);
283364
}
284365
Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
285366
}
286367
}
287368

288-
check_layout_abi(tcx, layout.layout);
369+
check_layout_abi(cx, layout);
289370

290371
if let Variants::Multiple { variants, .. } = &layout.variants {
291-
for variant in variants {
292-
check_layout_abi(tcx, *variant);
372+
for variant in variants.iter() {
293373
// No nested "multiple".
294374
assert!(matches!(variant.variants(), Variants::Single { .. }));
295-
// Skip empty variants.
296-
if variant.size() == Size::ZERO
297-
|| variant.fields().count() == 0
298-
|| variant.abi().is_uninhabited()
299-
{
300-
// These are never actually accessed anyway, so we can skip them. (Note that
301-
// sometimes, variants with fields have size 0, and sometimes, variants without
302-
// fields have non-0 size.)
303-
continue;
304-
}
305-
// Variants should have the same or a smaller size as the full thing.
375+
// Variants should have the same or a smaller size as the full thing,
376+
// and same for alignment.
306377
if variant.size() > layout.size {
307378
bug!(
308379
"Type with size {} bytes has variant with size {} bytes: {layout:#?}",
309380
layout.size.bytes(),
310381
variant.size().bytes(),
311382
)
312383
}
384+
if variant.align().abi > layout.align.abi {
385+
bug!(
386+
"Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}",
387+
layout.align.abi.bytes(),
388+
variant.align().abi.bytes(),
389+
)
390+
}
391+
// Skip empty variants.
392+
if variant.size() == Size::ZERO
393+
|| variant.fields().count() == 0
394+
|| variant.abi().is_uninhabited()
395+
{
396+
// These are never actually accessed anyway, so we can skip the coherence check
397+
// for them. They also fail that check, since they have
398+
// `Aggregate`/`Uninhbaited` ABI even when the main type is
399+
// `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size
400+
// 0, and sometimes, variants without fields have non-0 size.)
401+
continue;
402+
}
313403
// The top-level ABI and the ABI of the variants should be coherent.
404+
let scalar_coherent = |s1: Scalar, s2: Scalar| {
405+
s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx)
406+
};
314407
let abi_coherent = match (layout.abi, variant.abi()) {
315-
(Abi::Scalar(..), Abi::Scalar(..)) => true,
316-
(Abi::ScalarPair(..), Abi::ScalarPair(..)) => true,
408+
(Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
409+
(Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
410+
scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
411+
}
317412
(Abi::Uninhabited, _) => true,
318413
(Abi::Aggregate { .. }, _) => true,
319414
_ => false,
@@ -372,7 +467,7 @@ fn layout_of<'tcx>(
372467

373468
cx.record_layout_for_printing(layout);
374469

375-
sanity_check_layout(tcx, param_env, &layout);
470+
sanity_check_layout(&cx, &layout);
376471

377472
Ok(layout)
378473
})

0 commit comments

Comments
 (0)