Skip to content

Commit 6e27150

Browse files
committed
move layout sanity check to its own file
1 parent c2e4197 commit 6e27150

File tree

3 files changed

+304
-290
lines changed

3 files changed

+304
-290
lines changed

compiler/rustc_middle/src/ty/layout.rs

+4-290
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,10 @@ use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags;
22
use crate::mir::{GeneratorLayout, GeneratorSavedLocal};
33
use crate::ty::normalize_erasing_regions::NormalizationError;
44
use crate::ty::subst::Subst;
5-
use crate::ty::{self, subst::SubstsRef, EarlyBinder, ReprOptions, Ty, TyCtxt, TypeVisitable};
5+
use crate::ty::{
6+
self, layout_sanity_check::sanity_check_layout, subst::SubstsRef, EarlyBinder, ReprOptions, Ty,
7+
TyCtxt, TypeVisitable,
8+
};
69
use rustc_ast as ast;
710
use rustc_attr as attr;
811
use rustc_hir as hir;
@@ -221,295 +224,6 @@ impl<'tcx> fmt::Display for LayoutError<'tcx> {
221224
}
222225
}
223226

224-
/// Enforce some basic invariants on layouts.
225-
fn sanity_check_layout<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
226-
// Type-level uninhabitedness should always imply ABI uninhabitedness.
227-
if cx.tcx.conservative_is_privately_uninhabited(cx.param_env.and(layout.ty)) {
228-
assert!(layout.abi.is_uninhabited());
229-
}
230-
231-
if layout.size.bytes() % layout.align.abi.bytes() != 0 {
232-
bug!("size is not a multiple of align, in the following layout:\n{layout:#?}");
233-
}
234-
235-
if cfg!(debug_assertions) {
236-
/// Yields non-1-ZST fields of the type
237-
fn non_zst_fields<'tcx, 'a>(
238-
cx: &'a LayoutCx<'tcx, TyCtxt<'tcx>>,
239-
layout: &'a TyAndLayout<'tcx>,
240-
) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a {
241-
(0..layout.layout.fields().count()).filter_map(|i| {
242-
let field = layout.field(cx, i);
243-
// Also checking `align == 1` here leads to test failures in
244-
// `layout/zero-sized-array-union.rs`, where a type has a zero-size field with
245-
// alignment 4 that still gets ignored during layout computation (which is okay
246-
// since other fields already force alignment 4).
247-
let zst = field.is_zst();
248-
(!zst).then(|| (layout.fields.offset(i), field))
249-
})
250-
}
251-
252-
fn skip_newtypes<'tcx>(
253-
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
254-
layout: &TyAndLayout<'tcx>,
255-
) -> TyAndLayout<'tcx> {
256-
if matches!(layout.layout.variants(), Variants::Multiple { .. }) {
257-
// Definitely not a newtype of anything.
258-
return *layout;
259-
}
260-
let mut fields = non_zst_fields(cx, layout);
261-
let Some(first) = fields.next() else {
262-
// No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing
263-
return *layout
264-
};
265-
if fields.next().is_none() {
266-
let (offset, first) = first;
267-
if offset == Size::ZERO && first.layout.size() == layout.size {
268-
// This is a newtype, so keep recursing.
269-
// FIXME(RalfJung): I don't think it would be correct to do any checks for
270-
// alignment here, so we don't. Is that correct?
271-
return skip_newtypes(cx, &first);
272-
}
273-
}
274-
// No more newtypes here.
275-
*layout
276-
}
277-
278-
fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
279-
match layout.layout.abi() {
280-
Abi::Scalar(scalar) => {
281-
// No padding in scalars.
282-
let size = scalar.size(cx);
283-
let align = scalar.align(cx).abi;
284-
assert_eq!(
285-
layout.layout.size(),
286-
size,
287-
"size mismatch between ABI and layout in {layout:#?}"
288-
);
289-
assert_eq!(
290-
layout.layout.align().abi,
291-
align,
292-
"alignment mismatch between ABI and layout in {layout:#?}"
293-
);
294-
// Check that this matches the underlying field.
295-
let inner = skip_newtypes(cx, layout);
296-
assert!(
297-
matches!(inner.layout.abi(), Abi::Scalar(_)),
298-
"`Scalar` type {} is newtype around non-`Scalar` type {}",
299-
layout.ty,
300-
inner.ty
301-
);
302-
match inner.layout.fields() {
303-
FieldsShape::Primitive => {
304-
// Fine.
305-
}
306-
FieldsShape::Arbitrary { .. } => {
307-
// Should be an enum, the only field is the discriminant.
308-
assert!(
309-
inner.ty.is_enum(),
310-
"`Scalar` layout for non-primitive non-enum type {}",
311-
inner.ty
312-
);
313-
assert_eq!(
314-
inner.layout.fields().count(),
315-
1,
316-
"`Scalar` layout for multiple-field type in {inner:#?}",
317-
);
318-
let offset = inner.layout.fields().offset(0);
319-
let field = inner.field(cx, 0);
320-
// The field should be at the right offset, and match the `scalar` layout.
321-
assert_eq!(
322-
offset,
323-
Size::ZERO,
324-
"`Scalar` field at non-0 offset in {inner:#?}",
325-
);
326-
assert_eq!(
327-
field.size, size,
328-
"`Scalar` field with bad size in {inner:#?}",
329-
);
330-
assert_eq!(
331-
field.align.abi, align,
332-
"`Scalar` field with bad align in {inner:#?}",
333-
);
334-
assert!(
335-
matches!(field.abi, Abi::Scalar(_)),
336-
"`Scalar` field with bad ABI in {inner:#?}",
337-
);
338-
}
339-
_ => {
340-
panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty);
341-
}
342-
}
343-
}
344-
Abi::ScalarPair(scalar1, scalar2) => {
345-
// Sanity-check scalar pairs. These are a bit more flexible and support
346-
// padding, but we can at least ensure both fields actually fit into the layout
347-
// and the alignment requirement has not been weakened.
348-
let size1 = scalar1.size(cx);
349-
let align1 = scalar1.align(cx).abi;
350-
let size2 = scalar2.size(cx);
351-
let align2 = scalar2.align(cx).abi;
352-
assert!(
353-
layout.layout.align().abi >= cmp::max(align1, align2),
354-
"alignment mismatch between ABI and layout in {layout:#?}",
355-
);
356-
let field2_offset = size1.align_to(align2);
357-
assert!(
358-
layout.layout.size() >= field2_offset + size2,
359-
"size mismatch between ABI and layout in {layout:#?}"
360-
);
361-
// Check that the underlying pair of fields matches.
362-
let inner = skip_newtypes(cx, layout);
363-
assert!(
364-
matches!(inner.layout.abi(), Abi::ScalarPair(..)),
365-
"`ScalarPair` type {} is newtype around non-`ScalarPair` type {}",
366-
layout.ty,
367-
inner.ty
368-
);
369-
if matches!(inner.layout.variants(), Variants::Multiple { .. }) {
370-
// FIXME: ScalarPair for enums is enormously complicated and it is very hard
371-
// to check anything about them.
372-
return;
373-
}
374-
match inner.layout.fields() {
375-
FieldsShape::Arbitrary { .. } => {
376-
// Checked below.
377-
}
378-
FieldsShape::Union(..) => {
379-
// FIXME: I guess we could also check something here? Like, look at all fields?
380-
return;
381-
}
382-
_ => {
383-
panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}");
384-
}
385-
}
386-
let mut fields = non_zst_fields(cx, &inner);
387-
let (offset1, field1) = fields.next().unwrap_or_else(|| {
388-
panic!("`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}")
389-
});
390-
let (offset2, field2) = fields.next().unwrap_or_else(|| {
391-
panic!("`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}")
392-
});
393-
assert!(
394-
fields.next().is_none(),
395-
"`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}"
396-
);
397-
// The fields might be in opposite order.
398-
let (offset1, field1, offset2, field2) = if offset1 <= offset2 {
399-
(offset1, field1, offset2, field2)
400-
} else {
401-
(offset2, field2, offset1, field1)
402-
};
403-
// The fields should be at the right offset, and match the `scalar` layout.
404-
assert_eq!(
405-
offset1,
406-
Size::ZERO,
407-
"`ScalarPair` first field at non-0 offset in {inner:#?}",
408-
);
409-
assert_eq!(
410-
field1.size, size1,
411-
"`ScalarPair` first field with bad size in {inner:#?}",
412-
);
413-
assert_eq!(
414-
field1.align.abi, align1,
415-
"`ScalarPair` first field with bad align in {inner:#?}",
416-
);
417-
assert!(
418-
matches!(field1.abi, Abi::Scalar(_)),
419-
"`ScalarPair` first field with bad ABI in {inner:#?}",
420-
);
421-
assert_eq!(
422-
offset2, field2_offset,
423-
"`ScalarPair` second field at bad offset in {inner:#?}",
424-
);
425-
assert_eq!(
426-
field2.size, size2,
427-
"`ScalarPair` second field with bad size in {inner:#?}",
428-
);
429-
assert_eq!(
430-
field2.align.abi, align2,
431-
"`ScalarPair` second field with bad align in {inner:#?}",
432-
);
433-
assert!(
434-
matches!(field2.abi, Abi::Scalar(_)),
435-
"`ScalarPair` second field with bad ABI in {inner:#?}",
436-
);
437-
}
438-
Abi::Vector { count, element } => {
439-
// No padding in vectors. Alignment can be strengthened, though.
440-
assert!(
441-
layout.layout.align().abi >= element.align(cx).abi,
442-
"alignment mismatch between ABI and layout in {layout:#?}"
443-
);
444-
let size = element.size(cx) * count;
445-
assert_eq!(
446-
layout.layout.size(),
447-
size.align_to(cx.data_layout().vector_align(size).abi),
448-
"size mismatch between ABI and layout in {layout:#?}"
449-
);
450-
}
451-
Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
452-
}
453-
}
454-
455-
check_layout_abi(cx, layout);
456-
457-
if let Variants::Multiple { variants, .. } = &layout.variants {
458-
for variant in variants.iter() {
459-
// No nested "multiple".
460-
assert!(matches!(variant.variants(), Variants::Single { .. }));
461-
// Variants should have the same or a smaller size as the full thing,
462-
// and same for alignment.
463-
if variant.size() > layout.size {
464-
bug!(
465-
"Type with size {} bytes has variant with size {} bytes: {layout:#?}",
466-
layout.size.bytes(),
467-
variant.size().bytes(),
468-
)
469-
}
470-
if variant.align().abi > layout.align.abi {
471-
bug!(
472-
"Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}",
473-
layout.align.abi.bytes(),
474-
variant.align().abi.bytes(),
475-
)
476-
}
477-
// Skip empty variants.
478-
if variant.size() == Size::ZERO
479-
|| variant.fields().count() == 0
480-
|| variant.abi().is_uninhabited()
481-
{
482-
// These are never actually accessed anyway, so we can skip the coherence check
483-
// for them. They also fail that check, since they have
484-
// `Aggregate`/`Uninhbaited` ABI even when the main type is
485-
// `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size
486-
// 0, and sometimes, variants without fields have non-0 size.)
487-
continue;
488-
}
489-
// The top-level ABI and the ABI of the variants should be coherent.
490-
let scalar_coherent = |s1: Scalar, s2: Scalar| {
491-
s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx)
492-
};
493-
let abi_coherent = match (layout.abi, variant.abi()) {
494-
(Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
495-
(Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
496-
scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
497-
}
498-
(Abi::Uninhabited, _) => true,
499-
(Abi::Aggregate { .. }, _) => true,
500-
_ => false,
501-
};
502-
if !abi_coherent {
503-
bug!(
504-
"Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}",
505-
variant
506-
);
507-
}
508-
}
509-
}
510-
}
511-
}
512-
513227
#[instrument(skip(tcx, query), level = "debug")]
514228
fn layout_of<'tcx>(
515229
tcx: TyCtxt<'tcx>,

0 commit comments

Comments
 (0)