|
| 1 | +// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT |
| 2 | +// file at the top-level directory of this distribution and at |
| 3 | +// http://rust-lang.org/COPYRIGHT. |
| 4 | +// |
| 5 | +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 6 | +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 7 | +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| 8 | +// option. This file may not be copied, modified, or distributed |
| 9 | +// except according to those terms. |
| 10 | + |
| 11 | +use std::vec::bytes::{MutableByteVector, copy_memory}; |
| 12 | + |
| 13 | + |
| 14 | +/// Write a u64 into a vector, which must be 8 bytes long. The value is written in big-endian |
| 15 | +/// format. |
| 16 | +pub fn write_u64_be(dst: &mut[u8], input: u64) { |
| 17 | + use std::cast::transmute; |
| 18 | + use std::unstable::intrinsics::to_be64; |
| 19 | + assert!(dst.len() == 8); |
| 20 | + unsafe { |
| 21 | + let x: *mut i64 = transmute(dst.unsafe_mut_ref(0)); |
| 22 | + *x = to_be64(input as i64); |
| 23 | + } |
| 24 | +} |
| 25 | + |
| 26 | +/// Write a u32 into a vector, which must be 4 bytes long. The value is written in big-endian |
| 27 | +/// format. |
| 28 | +pub fn write_u32_be(dst: &mut[u8], input: u32) { |
| 29 | + use std::cast::transmute; |
| 30 | + use std::unstable::intrinsics::to_be32; |
| 31 | + assert!(dst.len() == 4); |
| 32 | + unsafe { |
| 33 | + let x: *mut i32 = transmute(dst.unsafe_mut_ref(0)); |
| 34 | + *x = to_be32(input as i32); |
| 35 | + } |
| 36 | +} |
| 37 | + |
| 38 | +/// Read a vector of bytes into a vector of u64s. The values are read in big-endian format. |
| 39 | +pub fn read_u64v_be(dst: &mut[u64], input: &[u8]) { |
| 40 | + use std::cast::transmute; |
| 41 | + use std::unstable::intrinsics::to_be64; |
| 42 | + assert!(dst.len() * 8 == input.len()); |
| 43 | + unsafe { |
| 44 | + let mut x: *mut i64 = transmute(dst.unsafe_mut_ref(0)); |
| 45 | + let mut y: *i64 = transmute(input.unsafe_ref(0)); |
| 46 | + do dst.len().times() { |
| 47 | + *x = to_be64(*y); |
| 48 | + x = x.offset(1); |
| 49 | + y = y.offset(1); |
| 50 | + } |
| 51 | + } |
| 52 | +} |
| 53 | + |
| 54 | +/// Read a vector of bytes into a vector of u32s. The values are read in big-endian format. |
| 55 | +pub fn read_u32v_be(dst: &mut[u32], input: &[u8]) { |
| 56 | + use std::cast::transmute; |
| 57 | + use std::unstable::intrinsics::to_be32; |
| 58 | + assert!(dst.len() * 4 == input.len()); |
| 59 | + unsafe { |
| 60 | + let mut x: *mut i32 = transmute(dst.unsafe_mut_ref(0)); |
| 61 | + let mut y: *i32 = transmute(input.unsafe_ref(0)); |
| 62 | + do dst.len().times() { |
| 63 | + *x = to_be32(*y); |
| 64 | + x = x.offset(1); |
| 65 | + y = y.offset(1); |
| 66 | + } |
| 67 | + } |
| 68 | +} |
| 69 | + |
| 70 | + |
| 71 | +/// A FixedBuffer, likes its name implies, is a fixed size buffer. When the buffer becomes full, it |
| 72 | +/// must be processed. The input() method takes care of processing and then clearing the buffer |
| 73 | +/// automatically. However, other methods do not and require the caller to process the buffer. Any |
| 74 | +/// method that modifies the buffer directory or provides the caller with bytes that can be modifies |
| 75 | +/// results in those bytes being marked as used by the buffer. |
| 76 | +pub trait FixedBuffer { |
| 77 | + /// Input a vector of bytes. If the buffer becomes full, proccess it with the provided |
| 78 | + /// function and then clear the buffer. |
| 79 | + fn input(&mut self, input: &[u8], func: &fn(&[u8])); |
| 80 | + |
| 81 | + /// Reset the buffer. |
| 82 | + fn reset(&mut self); |
| 83 | + |
| 84 | + /// Zero the buffer up until the specified index. The buffer position currently must not be |
| 85 | + /// greater than that index. |
| 86 | + fn zero_until(&mut self, idx: uint); |
| 87 | + |
| 88 | + /// Get a slice of the buffer of the specified size. There must be at least that many bytes |
| 89 | + /// remaining in the buffer. |
| 90 | + fn next<'s>(&'s mut self, len: uint) -> &'s mut [u8]; |
| 91 | + |
| 92 | + /// Get the current buffer. The buffer must already be full. This clears the buffer as well. |
| 93 | + fn full_buffer<'s>(&'s mut self) -> &'s [u8]; |
| 94 | + |
| 95 | + /// Get the current position of the buffer. |
| 96 | + fn position(&self) -> uint; |
| 97 | + |
| 98 | + /// Get the number of bytes remaining in the buffer until it is full. |
| 99 | + fn remaining(&self) -> uint; |
| 100 | + |
| 101 | + /// Get the size of the buffer |
| 102 | + fn size(&self) -> uint; |
| 103 | +} |
| 104 | + |
| 105 | +macro_rules! impl_fixed_buffer( ($name:ident, $size:expr) => ( |
| 106 | + impl FixedBuffer for $name { |
| 107 | + fn input(&mut self, input: &[u8], func: &fn(&[u8])) { |
| 108 | + let mut i = 0; |
| 109 | + |
| 110 | + // FIXME: #6304 - This local variable shouldn't be necessary. |
| 111 | + let size = $size; |
| 112 | + |
| 113 | + // If there is already data in the buffer, copy as much as we can into it and process |
| 114 | + // the data if the buffer becomes full. |
| 115 | + if self.buffer_idx != 0 { |
| 116 | + let buffer_remaining = size - self.buffer_idx; |
| 117 | + if input.len() >= buffer_remaining { |
| 118 | + copy_memory( |
| 119 | + self.buffer.mut_slice(self.buffer_idx, size), |
| 120 | + input.slice_to(buffer_remaining), |
| 121 | + buffer_remaining); |
| 122 | + self.buffer_idx = 0; |
| 123 | + func(self.buffer); |
| 124 | + i += buffer_remaining; |
| 125 | + } else { |
| 126 | + copy_memory( |
| 127 | + self.buffer.mut_slice(self.buffer_idx, self.buffer_idx + input.len()), |
| 128 | + input, |
| 129 | + input.len()); |
| 130 | + self.buffer_idx += input.len(); |
| 131 | + return; |
| 132 | + } |
| 133 | + } |
| 134 | + |
| 135 | + // While we have at least a full buffer size chunks's worth of data, process that data |
| 136 | + // without copying it into the buffer |
| 137 | + while input.len() - i >= size { |
| 138 | + func(input.slice(i, i + size)); |
| 139 | + i += size; |
| 140 | + } |
| 141 | + |
| 142 | + // Copy any input data into the buffer. At this point in the method, the ammount of |
| 143 | + // data left in the input vector will be less than the buffer size and the buffer will |
| 144 | + // be empty. |
| 145 | + let input_remaining = input.len() - i; |
| 146 | + copy_memory( |
| 147 | + self.buffer.mut_slice(0, input_remaining), |
| 148 | + input.slice_from(i), |
| 149 | + input.len() - i); |
| 150 | + self.buffer_idx += input_remaining; |
| 151 | + } |
| 152 | + |
| 153 | + fn reset(&mut self) { |
| 154 | + self.buffer_idx = 0; |
| 155 | + } |
| 156 | + |
| 157 | + fn zero_until(&mut self, idx: uint) { |
| 158 | + assert!(idx >= self.buffer_idx); |
| 159 | + self.buffer.mut_slice(self.buffer_idx, idx).set_memory(0); |
| 160 | + self.buffer_idx = idx; |
| 161 | + } |
| 162 | + |
| 163 | + fn next<'s>(&'s mut self, len: uint) -> &'s mut [u8] { |
| 164 | + self.buffer_idx += len; |
| 165 | + return self.buffer.mut_slice(self.buffer_idx - len, self.buffer_idx); |
| 166 | + } |
| 167 | + |
| 168 | + fn full_buffer<'s>(&'s mut self) -> &'s [u8] { |
| 169 | + assert!(self.buffer_idx == $size); |
| 170 | + self.buffer_idx = 0; |
| 171 | + return self.buffer.slice_to($size); |
| 172 | + } |
| 173 | + |
| 174 | + fn position(&self) -> uint { self.buffer_idx } |
| 175 | + |
| 176 | + fn remaining(&self) -> uint { $size - self.buffer_idx } |
| 177 | + |
| 178 | + fn size(&self) -> uint { $size } |
| 179 | + } |
| 180 | +)) |
| 181 | + |
| 182 | + |
| 183 | +/// A fixed size buffer of 64 bytes useful for cryptographic operations. |
| 184 | +pub struct FixedBuffer64 { |
| 185 | + priv buffer: [u8, ..64], |
| 186 | + priv buffer_idx: uint, |
| 187 | +} |
| 188 | + |
| 189 | +impl FixedBuffer64 { |
| 190 | + /// Create a new buffer |
| 191 | + pub fn new() -> FixedBuffer64 { |
| 192 | + return FixedBuffer64 { |
| 193 | + buffer: [0u8, ..64], |
| 194 | + buffer_idx: 0 |
| 195 | + }; |
| 196 | + } |
| 197 | +} |
| 198 | + |
| 199 | +impl_fixed_buffer!(FixedBuffer64, 64) |
| 200 | + |
| 201 | +/// A fixed size buffer of 128 bytes useful for cryptographic operations. |
| 202 | +pub struct FixedBuffer128 { |
| 203 | + priv buffer: [u8, ..128], |
| 204 | + priv buffer_idx: uint, |
| 205 | +} |
| 206 | + |
| 207 | +impl FixedBuffer128 { |
| 208 | + /// Create a new buffer |
| 209 | + pub fn new() -> FixedBuffer128 { |
| 210 | + return FixedBuffer128 { |
| 211 | + buffer: [0u8, ..128], |
| 212 | + buffer_idx: 0 |
| 213 | + }; |
| 214 | + } |
| 215 | +} |
| 216 | + |
| 217 | +impl_fixed_buffer!(FixedBuffer128, 128) |
| 218 | + |
| 219 | + |
| 220 | +/// The StandardPadding trait adds a method useful for various hash algorithms to a FixedBuffer |
| 221 | +/// struct. |
| 222 | +pub trait StandardPadding { |
| 223 | + /// Add standard padding to the buffer. The buffer must not be full when this method is called |
| 224 | + /// and is guaranteed to have exactly rem remaining bytes when it returns. If there are not at |
| 225 | + /// least rem bytes available, the buffer will be zero padded, processed, cleared, and then |
| 226 | + /// filled with zeros again until only rem bytes are remaining. |
| 227 | + fn standard_padding(&mut self, rem: uint, func: &fn(&[u8])); |
| 228 | +} |
| 229 | + |
| 230 | +impl <T: FixedBuffer> StandardPadding for T { |
| 231 | + fn standard_padding(&mut self, rem: uint, func: &fn(&[u8])) { |
| 232 | + let size = self.size(); |
| 233 | + |
| 234 | + self.next(1)[0] = 128; |
| 235 | + |
| 236 | + if self.remaining() < rem { |
| 237 | + self.zero_until(size); |
| 238 | + func(self.full_buffer()); |
| 239 | + } |
| 240 | + |
| 241 | + self.zero_until(size - rem); |
| 242 | + } |
| 243 | +} |
0 commit comments